Macrowine 2021
IVES 9 IVES Conference Series 9 Natural magnetic levitation for the storage of wine bottles

Natural magnetic levitation for the storage of wine bottles

Abstract

AIM: Wine storage ensuring the quality and correct aging is one of the issues that wineries, wine traders and consumers encounter after wine bottling. The environmental conditions in which the bottle are stored such as temperature, humidity and vibrations may dramatically influence the process. The aim of this project is to study a new cutting-edge technology that uses natural magnetic levitation to dampen the effects of vibrations affecting fine wine bottles.

METHODS: Free standing wine racks equipped with natural magnetic levitation devices (Relaxa, Wineleven, Italy) were compared with conventional racks for a 12-month storage of a fine red wine in bottles (see scheme). A: Relaxa (upper shelf) D: Relaxa (upper shelf) C (control) bottom shelf in contact with the floor and with A B: bottom shelf in contact with the floor (and with D) equipped with a speaker diffusing sonic vibrations floor floor 5 sampling times (2 bottles for each treatment) are planned: time 0 (start of storage); time 1 (after 30 d), time 3 m; time 6 months; time 12 months. All the samples are being analyzed for volatile compounds (GCxGC ToF/MS), phenolic profile (HPLC DAD/FLD and offline LC QqQ-MS), sensory analysis (15-person panel trained for the QDA ® method) and multivariate statistic post-processing.

RESULTS: The panel could be considered reliable for the evaluation of 22 out of 25 sensory descriptors. The statistical elaboration on sensory data showed a good discrimination among different treatments. Instead, the polyphenols and aroma compounds analysis showed mostly the effects of storage time.

CONCLUSIONS

So far (time 6), the sensory analysis showed that the descriptors overall quality judgment, as well as clarity, gustatory cleanness, dry fruit, and olfactory cleanness are linked with treatment A. The chemical profiling instead mostly described the evolution of the wines during the storage.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Emanuele Boselli

Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy,Edoardo Longo, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy Giulia Windisch, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy Emanuele Boselli, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy

Contact the author

Keywords

wine storage, vibrations, sensory analysis, chemometrics, natural magnetic levitation

Citation

Related articles…

The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition

Terroir factors causing sensory and chemical variation in Riesling wines

The term “terroir”, originated in France, comprises the interaction of soil, climate, and topography with the vines of a specific variety and may be extended to the human impact due to the active choice of viticultural and oenological treatments.

LC-MS based metabolomics and target analysis to study the chemical evolution of wines stored under different redox conditions

Oxygen is a key player in oenology, since its effects can be a blessing, benefiting wine quality, or a curse causing irreversible damage.

Beyond classical statistics – data fusion coupled with pattern recognition

AIM: Patterns in data obtained from wine chemical and sensory evaluations are difficult to infer using classical statistics.

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.