Macrowine 2021
IVES 9 IVES Conference Series 9 Natural magnetic levitation for the storage of wine bottles

Natural magnetic levitation for the storage of wine bottles

Abstract

AIM: Wine storage ensuring the quality and correct aging is one of the issues that wineries, wine traders and consumers encounter after wine bottling. The environmental conditions in which the bottle are stored such as temperature, humidity and vibrations may dramatically influence the process. The aim of this project is to study a new cutting-edge technology that uses natural magnetic levitation to dampen the effects of vibrations affecting fine wine bottles.

METHODS: Free standing wine racks equipped with natural magnetic levitation devices (Relaxa, Wineleven, Italy) were compared with conventional racks for a 12-month storage of a fine red wine in bottles (see scheme). A: Relaxa (upper shelf) D: Relaxa (upper shelf) C (control) bottom shelf in contact with the floor and with A B: bottom shelf in contact with the floor (and with D) equipped with a speaker diffusing sonic vibrations floor floor 5 sampling times (2 bottles for each treatment) are planned: time 0 (start of storage); time 1 (after 30 d), time 3 m; time 6 months; time 12 months. All the samples are being analyzed for volatile compounds (GCxGC ToF/MS), phenolic profile (HPLC DAD/FLD and offline LC QqQ-MS), sensory analysis (15-person panel trained for the QDA ® method) and multivariate statistic post-processing.

RESULTS: The panel could be considered reliable for the evaluation of 22 out of 25 sensory descriptors. The statistical elaboration on sensory data showed a good discrimination among different treatments. Instead, the polyphenols and aroma compounds analysis showed mostly the effects of storage time.

CONCLUSIONS

So far (time 6), the sensory analysis showed that the descriptors overall quality judgment, as well as clarity, gustatory cleanness, dry fruit, and olfactory cleanness are linked with treatment A. The chemical profiling instead mostly described the evolution of the wines during the storage.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Emanuele Boselli

Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy,Edoardo Longo, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy Giulia Windisch, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy Emanuele Boselli, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy

Contact the author

Keywords

wine storage, vibrations, sensory analysis, chemometrics, natural magnetic levitation

Citation

Related articles…

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies

Resilience analysis in viticulture: an approach based on expert knowledge elicitation

The study aims to address the issue of resilience to climate change in viticulture through the adoption of the expert knowledge elicitation (EKE) approach.

Risposte enologiche del Nero d’Avola su suoli a diverso grado di salinità

Vengono riportati i risultati enologici di uno studio condotto sul Nero d’Avola in un tipico ambiente viticolo siciliano, in cui insistono suoli che presentano un diverso grado di salinità.

Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Sauvignon blanc was first planted in Marlborough, New Zealand in the mid-1970s. Since that time, Marlborough has gained an international reputation by producing the definitive wine style of that grape variety.

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays.