Macrowine 2021
IVES 9 IVES Conference Series 9 Natural magnetic levitation for the storage of wine bottles

Natural magnetic levitation for the storage of wine bottles

Abstract

AIM: Wine storage ensuring the quality and correct aging is one of the issues that wineries, wine traders and consumers encounter after wine bottling. The environmental conditions in which the bottle are stored such as temperature, humidity and vibrations may dramatically influence the process. The aim of this project is to study a new cutting-edge technology that uses natural magnetic levitation to dampen the effects of vibrations affecting fine wine bottles.

METHODS: Free standing wine racks equipped with natural magnetic levitation devices (Relaxa, Wineleven, Italy) were compared with conventional racks for a 12-month storage of a fine red wine in bottles (see scheme). A: Relaxa (upper shelf) D: Relaxa (upper shelf) C (control) bottom shelf in contact with the floor and with A B: bottom shelf in contact with the floor (and with D) equipped with a speaker diffusing sonic vibrations floor floor 5 sampling times (2 bottles for each treatment) are planned: time 0 (start of storage); time 1 (after 30 d), time 3 m; time 6 months; time 12 months. All the samples are being analyzed for volatile compounds (GCxGC ToF/MS), phenolic profile (HPLC DAD/FLD and offline LC QqQ-MS), sensory analysis (15-person panel trained for the QDA ® method) and multivariate statistic post-processing.

RESULTS: The panel could be considered reliable for the evaluation of 22 out of 25 sensory descriptors. The statistical elaboration on sensory data showed a good discrimination among different treatments. Instead, the polyphenols and aroma compounds analysis showed mostly the effects of storage time.

CONCLUSIONS

So far (time 6), the sensory analysis showed that the descriptors overall quality judgment, as well as clarity, gustatory cleanness, dry fruit, and olfactory cleanness are linked with treatment A. The chemical profiling instead mostly described the evolution of the wines during the storage.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Emanuele Boselli

Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy,Edoardo Longo, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy Giulia Windisch, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy Emanuele Boselli, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy

Contact the author

Keywords

wine storage, vibrations, sensory analysis, chemometrics, natural magnetic levitation

Citation

Related articles…

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

Soil management of interrow spacing as an important factor to protect the vineyard soils from runoff and erosion under the Mediterranean climate

Nearly one third of the Herault vineyard (south of France) is planted on soils very sensitive to water runoff and erosion

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.

A meta-analysis of the ecological impact of viticultural practices on soil biodiversity

Viticulture is facing two major challenges – climate change and agroecological transition. The soil plays a pivotal role in these transition processes. Therefore, soil quality and adequate soil management are key levers for an ecologically and economically sustainable viticulture. Over the last 15 years, numerous studies evidenced strong effects of viticultural practices on the soil physical, chemical and biological quality. However, to date a global analysis providing a comprehensive overview of the ecological impacts of viticultural practices on soil biological quality is missing.

Spatio-temporal analysis of grapevine water behaviour in hillslope vineyards. the example of corton hill, Burgundy

Hillslope vineyards show various and complex water dynamics between soil and plants, and in order to gain further insight into this phenomenon, 8 grapevine plots were monitored during three vintages, from 2010 to 2013, on Corton Hill, Burgundy, France.