Macrowine 2021
IVES 9 IVES Conference Series 9 Natural magnetic levitation for the storage of wine bottles

Natural magnetic levitation for the storage of wine bottles

Abstract

AIM: Wine storage ensuring the quality and correct aging is one of the issues that wineries, wine traders and consumers encounter after wine bottling. The environmental conditions in which the bottle are stored such as temperature, humidity and vibrations may dramatically influence the process. The aim of this project is to study a new cutting-edge technology that uses natural magnetic levitation to dampen the effects of vibrations affecting fine wine bottles.

METHODS: Free standing wine racks equipped with natural magnetic levitation devices (Relaxa, Wineleven, Italy) were compared with conventional racks for a 12-month storage of a fine red wine in bottles (see scheme). A: Relaxa (upper shelf) D: Relaxa (upper shelf) C (control) bottom shelf in contact with the floor and with A B: bottom shelf in contact with the floor (and with D) equipped with a speaker diffusing sonic vibrations floor floor 5 sampling times (2 bottles for each treatment) are planned: time 0 (start of storage); time 1 (after 30 d), time 3 m; time 6 months; time 12 months. All the samples are being analyzed for volatile compounds (GCxGC ToF/MS), phenolic profile (HPLC DAD/FLD and offline LC QqQ-MS), sensory analysis (15-person panel trained for the QDA ® method) and multivariate statistic post-processing.

RESULTS: The panel could be considered reliable for the evaluation of 22 out of 25 sensory descriptors. The statistical elaboration on sensory data showed a good discrimination among different treatments. Instead, the polyphenols and aroma compounds analysis showed mostly the effects of storage time.

CONCLUSIONS

So far (time 6), the sensory analysis showed that the descriptors overall quality judgment, as well as clarity, gustatory cleanness, dry fruit, and olfactory cleanness are linked with treatment A. The chemical profiling instead mostly described the evolution of the wines during the storage.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Emanuele Boselli

Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy,Edoardo Longo, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy Giulia Windisch, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy Emanuele Boselli, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy

Contact the author

Keywords

wine storage, vibrations, sensory analysis, chemometrics, natural magnetic levitation

Citation

Related articles…

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

What does the concept of natural wine evoke in the minds and senses of tasters? Effect of the level of expertise.

In this video recording of the IVES science meeting 2025, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne-Franche-Comté, Dijon, France) and María-Pilar Sáenz-Navajas (Instituto de Ciencias de la Vid y el Vino (ICVV) (CSIC-UR-GR), La Rioja, Spain) speak about the concept of natural wine. This presentation is based on an original article accessible for free on OENO One.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Effect of different plant fibers on the elimination of undesirable compounds in red wine 

The presence of undesirable compounds in wines, such as ota, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. Additionally, an excess of tannins can produce an undesirable increase in the astringency and bitterness of the wine, so tannins are also a target for reduction. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity.