Macrowine 2021
IVES 9 IVES Conference Series 9 Approaches to the classification of wine aroma aging potential. Applications to the case of Valpolicella red wines

Approaches to the classification of wine aroma aging potential. Applications to the case of Valpolicella red wines

Abstract

AIM: Unlike most of other foods, wine sensory quality is thought to reach a peak after an aging period. In the case of the Valpolicella red wines, the PDO regulation requires wines to undergo a minimum period of aging comprised between one and four years depending on the wine type. During this period many changes in wine composition take place, including significant modifications to wine aroma composition, through a wide range of acid hydrolysis reactions, cyclization, rearrangements and oxidations, that to date are only partly understood. Among these, hydrolysis of esters and glycosidic precursors is considered central to wine aroma evolution. Wines with higher content of precursors are expected to have greater aroma potential. However, acid-catalysed degradation also takes place during wine aging, so that the actual content of a given volatile compound after a period of aging is given by the balance between acid-driven release and degradation. The aim of this study was to investigate the fate of some volatile aroma compounds important for the sensory profile of Valpolicella wine.

METHODS: Different Valpolicella wines obtained from grapes harvested in different vineyards and vintages were submitted to two different ageing protocols. In one case wines were kept for 30 days at 16°C and 40 °C (Slaghenaufi et al. 2019) the latter simulating an aging of approximately one years. In the second case, harsher conditions were applied, consisting of 60°C (±0.2°C) for 0, 48, 72, and 168 (Silva Ferreira et al. 2003). Free volatile compounds and glycosidic precursors were analysed with SPE- and SPME-GC-MS techniques.

RESULTS: Several classes of compounds of varietal and fermentative origin like esters, terpenes, norisoprenoids and to a lesser extent of some benzenoids were affected by aging. In particular aged wines were characterized by increased content of 1,4- and 1,8-cineole, p-cymene and p-menthane-1,8-diol, branched chain fatty acids ethyl esters, TDN, TPB, vitispirane, and 2,6-dimethoxyphenol. The application of the harsh aging treatment allowed to highlight highly significant relationships between cineole occurrence in aged wines and linalool content of the young wine, in particular the ratio between glycosylated and free forms. Furthermore, most of acetic and ethyl esters were found to decrease with aging in an amount correlated to their initial content.

Conclusions

Occurence and amount of many compounds in aged wines was correlated to the composition of specific compounds in young wines. In particular in aged wines cineole occurrence was linked to linalool content, providing useful clues for the selection of young wines with specific aging attitude.

ACKNOWLEDGMENTS

Azienda Agricola f.lli Tedeschi is acknowledged for financial support

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanni Luzzini

University of Verona,Davide SLAGHENAUFI, University of Verona Maurizio, UGLIANO, University of Verona Jessica, SAMANIEGO-SOLIS, University of Verona Riccardo TEDESCHI, Azienda Agricola F.lli Tedeschi

Contact the author

Keywords

aging treatment, cineoles, linalool, balsamic aroma, valpolicella

Citation

Related articles…

A GIS Analysis of New Zealand Terroir

This paper summarises a national survey of the geological setting of vineyards in New Zealand. We also provide an overview of climate, slope, aspect and varietals planted in New Zealand vineyards as a whole and for some individual regions.

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).

Optimizing vine pruning of Pinot noir and Müller-Thurgau after extreme hail damage

Hail damage can have a major impact on the vine’s physiological growth (defoliation, wood and cane damage) and can lead to significant yield and economic losses.

Correction de la teneur en alcool des vins par évaporation partielle sous vide en cours de fermentation alcoolique

Climate change has become a reality that is becoming more and more apparent every day, with changes in the physico-chemical composition of grapes and an increase in the alcohol content of finished wines. These higher alcoholic degrees are not without consequences for the success of alcoholic and malolactic fermentation. Correcting the alcohol content (-20% of the initial alcoholic strength) is also part of an approach designed to meet consumer expectations for healthier, lighter or lower-alcohol wines (9 to 13% vol.). Correcting the alcohol content of wines also rebalances the mouthfeel by reducing the alcohol’s burn.