Macrowine 2021
IVES 9 IVES Conference Series 9 Approaches to the classification of wine aroma aging potential. Applications to the case of Valpolicella red wines

Approaches to the classification of wine aroma aging potential. Applications to the case of Valpolicella red wines

Abstract

AIM: Unlike most of other foods, wine sensory quality is thought to reach a peak after an aging period. In the case of the Valpolicella red wines, the PDO regulation requires wines to undergo a minimum period of aging comprised between one and four years depending on the wine type. During this period many changes in wine composition take place, including significant modifications to wine aroma composition, through a wide range of acid hydrolysis reactions, cyclization, rearrangements and oxidations, that to date are only partly understood. Among these, hydrolysis of esters and glycosidic precursors is considered central to wine aroma evolution. Wines with higher content of precursors are expected to have greater aroma potential. However, acid-catalysed degradation also takes place during wine aging, so that the actual content of a given volatile compound after a period of aging is given by the balance between acid-driven release and degradation. The aim of this study was to investigate the fate of some volatile aroma compounds important for the sensory profile of Valpolicella wine.

METHODS: Different Valpolicella wines obtained from grapes harvested in different vineyards and vintages were submitted to two different ageing protocols. In one case wines were kept for 30 days at 16°C and 40 °C (Slaghenaufi et al. 2019) the latter simulating an aging of approximately one years. In the second case, harsher conditions were applied, consisting of 60°C (±0.2°C) for 0, 48, 72, and 168 (Silva Ferreira et al. 2003). Free volatile compounds and glycosidic precursors were analysed with SPE- and SPME-GC-MS techniques.

RESULTS: Several classes of compounds of varietal and fermentative origin like esters, terpenes, norisoprenoids and to a lesser extent of some benzenoids were affected by aging. In particular aged wines were characterized by increased content of 1,4- and 1,8-cineole, p-cymene and p-menthane-1,8-diol, branched chain fatty acids ethyl esters, TDN, TPB, vitispirane, and 2,6-dimethoxyphenol. The application of the harsh aging treatment allowed to highlight highly significant relationships between cineole occurrence in aged wines and linalool content of the young wine, in particular the ratio between glycosylated and free forms. Furthermore, most of acetic and ethyl esters were found to decrease with aging in an amount correlated to their initial content.

Conclusions

Occurence and amount of many compounds in aged wines was correlated to the composition of specific compounds in young wines. In particular in aged wines cineole occurrence was linked to linalool content, providing useful clues for the selection of young wines with specific aging attitude.

ACKNOWLEDGMENTS

Azienda Agricola f.lli Tedeschi is acknowledged for financial support

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanni Luzzini

University of Verona,Davide SLAGHENAUFI, University of Verona Maurizio, UGLIANO, University of Verona Jessica, SAMANIEGO-SOLIS, University of Verona Riccardo TEDESCHI, Azienda Agricola F.lli Tedeschi

Contact the author

Keywords

aging treatment, cineoles, linalool, balsamic aroma, valpolicella

Citation

Related articles…

Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Grapevine powdery mildew resistance is a key target for grape breeders and grape growers worldwide. The driver of the USDA-NIFA-SCRI VitisGen3 project is completing the pipeline from germplasm identification to QTL to candidate gene characterization to new cultivars to vineyards to consumers. This is a common thread across such projects internationally. We will discuss how our objectives and approaches leverage big data to advance this initiative, starting with genomics and computer vision phenotyping for gene discovery and genetic improvement. To manage and maintain resistances for long-term sustainability, growers will be trained through our nation-wide extension and outreach plan.

Influence of pedoclimatic factors during berry ripening in Burgundy

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy.

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].