Macrowine 2021
IVES 9 IVES Conference Series 9 Approaches to the classification of wine aroma aging potential. Applications to the case of Valpolicella red wines

Approaches to the classification of wine aroma aging potential. Applications to the case of Valpolicella red wines

Abstract

AIM: Unlike most of other foods, wine sensory quality is thought to reach a peak after an aging period. In the case of the Valpolicella red wines, the PDO regulation requires wines to undergo a minimum period of aging comprised between one and four years depending on the wine type. During this period many changes in wine composition take place, including significant modifications to wine aroma composition, through a wide range of acid hydrolysis reactions, cyclization, rearrangements and oxidations, that to date are only partly understood. Among these, hydrolysis of esters and glycosidic precursors is considered central to wine aroma evolution. Wines with higher content of precursors are expected to have greater aroma potential. However, acid-catalysed degradation also takes place during wine aging, so that the actual content of a given volatile compound after a period of aging is given by the balance between acid-driven release and degradation. The aim of this study was to investigate the fate of some volatile aroma compounds important for the sensory profile of Valpolicella wine.

METHODS: Different Valpolicella wines obtained from grapes harvested in different vineyards and vintages were submitted to two different ageing protocols. In one case wines were kept for 30 days at 16°C and 40 °C (Slaghenaufi et al. 2019) the latter simulating an aging of approximately one years. In the second case, harsher conditions were applied, consisting of 60°C (±0.2°C) for 0, 48, 72, and 168 (Silva Ferreira et al. 2003). Free volatile compounds and glycosidic precursors were analysed with SPE- and SPME-GC-MS techniques.

RESULTS: Several classes of compounds of varietal and fermentative origin like esters, terpenes, norisoprenoids and to a lesser extent of some benzenoids were affected by aging. In particular aged wines were characterized by increased content of 1,4- and 1,8-cineole, p-cymene and p-menthane-1,8-diol, branched chain fatty acids ethyl esters, TDN, TPB, vitispirane, and 2,6-dimethoxyphenol. The application of the harsh aging treatment allowed to highlight highly significant relationships between cineole occurrence in aged wines and linalool content of the young wine, in particular the ratio between glycosylated and free forms. Furthermore, most of acetic and ethyl esters were found to decrease with aging in an amount correlated to their initial content.

Conclusions

Occurence and amount of many compounds in aged wines was correlated to the composition of specific compounds in young wines. In particular in aged wines cineole occurrence was linked to linalool content, providing useful clues for the selection of young wines with specific aging attitude.

ACKNOWLEDGMENTS

Azienda Agricola f.lli Tedeschi is acknowledged for financial support

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanni Luzzini

University of Verona,Davide SLAGHENAUFI, University of Verona Maurizio, UGLIANO, University of Verona Jessica, SAMANIEGO-SOLIS, University of Verona Riccardo TEDESCHI, Azienda Agricola F.lli Tedeschi

Contact the author

Keywords

aging treatment, cineoles, linalool, balsamic aroma, valpolicella

Citation

Related articles…

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

Zonificación vitícola y aplicación a la D.O. Montilla-Moriles, usando como referencia la variedad ‘Pedro Ximenes’

Se señalaron 28 parcelas, en la zona de D.O. Montilla-Moriles, repartidas por toda la superficie de viñedo, de ellas 12 se localizan en las Zonas de calidad Superior, en los términos municipales de Montilla

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Foldable lyre as an alternative to improve yield and oenological potential of grapes for a sustainable viticulture

Actually, many countries around the world are studying different strategies for adapting winegrowing regions to climate changes, focusing on a sustainable viticulture.