Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of winemaking practices on Pinot blanc quality

Effects of winemaking practices on Pinot blanc quality

Abstract

AIM: Two winemaking processes for Pinot blanc were investigated following the chemical and sensory profiles for 12 months, aiming at: i) determining the chemical and sensory profiles, ii) correlating the sensory descriptors with the chemical profiles, iii) evaluating the overall quality of the Pinot blanc wines.

METHODS: The harvested grapes (2018) were processed in an experimental and control vinifications. The experimental vinifications included a prefermentative cold maceration, yeast autolysate addition and bentonite treatment. GC-MS, HPLC-DAD and HPLC-MS (chemical) and QDA (sensory) techniques were applied.

RESULTS: Specific phenols differentiated the two wines. Several volatile esters contributed more to the controls. Higher alcohols characterized the experimental wines. The controls got a higher overall quality judgment up to nine months. 

CONCLUSIONS

The pre-fermentative maceration was the operation most differentiating the wines. The control wine displayed a faster change in the volatile and sensory profiles. The experimental wine showed a faster evolution of the phenolic profile. The sensory analysis described the key differences and the evolution of the sensory aspects.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Edoardo Longo

Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy,Simone, POGGESI, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy  Amanda, DUPAS DE MATOS, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy; Feast and Riddet Institute, Massey University, Palmerston North 4410, New Zealand  Ulrich, PEDRI, Institute for Fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ, Italy  Danila, CHIOTTI, Institute for Fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ, Italy  Daniela, EISENSTECKEN, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ  Christof, SANOLL, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ  Peter, ROBATSCHER, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ  Emanuele, BOSELLI, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy

Contact the author

Keywords

pinot blanc, aroma profile, phenolic profile, sensory analysis

Citation

Related articles…

The Wine Active Compounds (WAC) conference 2022

The 5th edition of the International Conference Series on Wine Active Compounds (WAC) will be held from 29 June to 1 July 2022 (Dijon, France). All authors with accepted abstracts will have the possibility to publish either a short 4-pages article or a...

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Usefulness and limits of the crop water stress index obtained from leaf temperature for vine water status monitoring

Aims: This work aimed i) to calibrate the accuracy of estimating vineyard water status by crop water stress index (CWSI) compared to stem water potential; ii) to determine the time interval during the day that best correlates to stem water potential and iii) to understand the its usefulness.

Terroir zoning in appellation campo de borja (northeast Spain): Preliminary results

The components and methodology for characterization of the terroir have been described by Gómez-Miguel & Sotés (1993-2014, 2003) and Gómez-Miguel (2011) taking into account the full range of environmental factors (i.e: climate, lithology, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model), and specific variables to the country’s viticulture (i.e: size and distribution of the vineyards, varieties, phenology, productivity, quality, designation regulations, etc.).

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.