Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of winemaking practices on Pinot blanc quality

Effects of winemaking practices on Pinot blanc quality

Abstract

AIM: Two winemaking processes for Pinot blanc were investigated following the chemical and sensory profiles for 12 months, aiming at: i) determining the chemical and sensory profiles, ii) correlating the sensory descriptors with the chemical profiles, iii) evaluating the overall quality of the Pinot blanc wines.

METHODS: The harvested grapes (2018) were processed in an experimental and control vinifications. The experimental vinifications included a prefermentative cold maceration, yeast autolysate addition and bentonite treatment. GC-MS, HPLC-DAD and HPLC-MS (chemical) and QDA (sensory) techniques were applied.

RESULTS: Specific phenols differentiated the two wines. Several volatile esters contributed more to the controls. Higher alcohols characterized the experimental wines. The controls got a higher overall quality judgment up to nine months. 

CONCLUSIONS

The pre-fermentative maceration was the operation most differentiating the wines. The control wine displayed a faster change in the volatile and sensory profiles. The experimental wine showed a faster evolution of the phenolic profile. The sensory analysis described the key differences and the evolution of the sensory aspects.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Edoardo Longo

Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy,Simone, POGGESI, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy  Amanda, DUPAS DE MATOS, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy; Feast and Riddet Institute, Massey University, Palmerston North 4410, New Zealand  Ulrich, PEDRI, Institute for Fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ, Italy  Danila, CHIOTTI, Institute for Fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ, Italy  Daniela, EISENSTECKEN, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ  Christof, SANOLL, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ  Peter, ROBATSCHER, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ  Emanuele, BOSELLI, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy

Contact the author

Keywords

pinot blanc, aroma profile, phenolic profile, sensory analysis

Citation

Related articles…

Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

“Sangiovese” (Vitis vinifera L. sativa cv. Sangiovese) is the main grape variety to be established in Italy, being the only country in Europe where this grape is commonly found.

Redwine project: increasing microalgae biomass feedstock by valorising wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern.

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

The regulation of ABA-induced anthocyanin accumulation in grape berry

Color is a key quality trait for grape berry and the producing wines. Berry color of red genotypes is mainly determined by the quantity and composition of anthocyanins accumulated in the skin and/or pulp. Both genetic and environmental factors could influence the quantity and composition of anthocyanins, while the underlying mechanisms are not fully clear. To explore the mechanisms underlying the diversity of anthocyanin accumulation in grape berry, we compared two grapevine genotypes showing distinct sensitivities to ABA-induced anthocyanin biosynthesis, where one genotype showed minor responses to exogenous ABA application while the other showed significant increase in anthocyanins after exogenous ABA application.

Exploring the impact of grape pressing on must and wine composition

Pressing has a relevant impact on the characteristics of the must and subsequently on white wines produced [1]. Therefore, the adequate management of pressing can lead to the desired extraction of phenols and other grape compounds (i.e. Organic acids), aromas and their precursors, allowing the production of balanced wines [2]. This aspect is especially important to sparkling wine where the acidity and pH, and the content of phenols affect its longevity and the expected sensory character.