Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of winemaking practices on Pinot blanc quality

Effects of winemaking practices on Pinot blanc quality

Abstract

AIM: Two winemaking processes for Pinot blanc were investigated following the chemical and sensory profiles for 12 months, aiming at: i) determining the chemical and sensory profiles, ii) correlating the sensory descriptors with the chemical profiles, iii) evaluating the overall quality of the Pinot blanc wines.

METHODS: The harvested grapes (2018) were processed in an experimental and control vinifications. The experimental vinifications included a prefermentative cold maceration, yeast autolysate addition and bentonite treatment. GC-MS, HPLC-DAD and HPLC-MS (chemical) and QDA (sensory) techniques were applied.

RESULTS: Specific phenols differentiated the two wines. Several volatile esters contributed more to the controls. Higher alcohols characterized the experimental wines. The controls got a higher overall quality judgment up to nine months. 

CONCLUSIONS

The pre-fermentative maceration was the operation most differentiating the wines. The control wine displayed a faster change in the volatile and sensory profiles. The experimental wine showed a faster evolution of the phenolic profile. The sensory analysis described the key differences and the evolution of the sensory aspects.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Edoardo Longo

Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy,Simone, POGGESI, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy  Amanda, DUPAS DE MATOS, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy; Feast and Riddet Institute, Massey University, Palmerston North 4410, New Zealand  Ulrich, PEDRI, Institute for Fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ, Italy  Danila, CHIOTTI, Institute for Fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ, Italy  Daniela, EISENSTECKEN, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ  Christof, SANOLL, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ  Peter, ROBATSCHER, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ  Emanuele, BOSELLI, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy

Contact the author

Keywords

pinot blanc, aroma profile, phenolic profile, sensory analysis

Citation

Related articles…

Influence of different environments on grape phenolic and aromatic composition of threeclone of ‘nebbiolo’ (Vitis Vinifera L.)

The interaction between cultivar and growing environment is the base of wine quality and typicality. In recent time the behaviour of different clones within the same cultivar became another fundamental factor influencing the enological result. In order to clarify cultivar/clone/environment relations, a trial was carried out in 2008 studying the performances of three clones of ‘Nebbiolo’, grown in different environments: south-east Piedmont (hilly and characterized by a loamy and alkaline soil) and north-east Piedmont (a plain area characterized by a sandy and acidic soil).

Haplotype-resolved genome assemblies of Chasselas and Ugni Blanc

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous real-field genetic pool Vitis vinifera cultivars by combining high-fidelity long-read sequencing (HiFi) and high‐throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar.

A look back at 20 years of exploring the future of the vines and wines sector

What if, in 25 years, most wines were dealcoholized and flavored ? What if vines were only cultivated to combat erosion, store carbon, and provide anthocyanins…? What if climate change completely changed the list of vine varieties cultivable for wine production in France? What if food stores had completely disappeared in favor of virtual platforms? And if… because the long-term future is not predetermined and therefore not knowable, because the future is open to several possibilities, because the future does not emerge from nothing but from the present which conceals heavy trends and weak signals, prospective approaches make it possible to consider the room for maneuver that actors have to promote the advent of a future, which we can hope to be chosen, at least in part.

Analyses of a long-term soil temperature record for the prediction of climate change induced soil carbon changes and greenhouse gas emissions in vineyards

The evaluation of the current and future impact of climate change on viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in almost all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the ipcc (the physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.