Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of winemaking practices on Pinot blanc quality

Effects of winemaking practices on Pinot blanc quality

Abstract

AIM: Two winemaking processes for Pinot blanc were investigated following the chemical and sensory profiles for 12 months, aiming at: i) determining the chemical and sensory profiles, ii) correlating the sensory descriptors with the chemical profiles, iii) evaluating the overall quality of the Pinot blanc wines.

METHODS: The harvested grapes (2018) were processed in an experimental and control vinifications. The experimental vinifications included a prefermentative cold maceration, yeast autolysate addition and bentonite treatment. GC-MS, HPLC-DAD and HPLC-MS (chemical) and QDA (sensory) techniques were applied.

RESULTS: Specific phenols differentiated the two wines. Several volatile esters contributed more to the controls. Higher alcohols characterized the experimental wines. The controls got a higher overall quality judgment up to nine months. 

CONCLUSIONS

The pre-fermentative maceration was the operation most differentiating the wines. The control wine displayed a faster change in the volatile and sensory profiles. The experimental wine showed a faster evolution of the phenolic profile. The sensory analysis described the key differences and the evolution of the sensory aspects.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Edoardo Longo

Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy,Simone, POGGESI, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy  Amanda, DUPAS DE MATOS, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy; Feast and Riddet Institute, Massey University, Palmerston North 4410, New Zealand  Ulrich, PEDRI, Institute for Fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ, Italy  Danila, CHIOTTI, Institute for Fruit Growing and Viticulture, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ, Italy  Daniela, EISENSTECKEN, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ  Christof, SANOLL, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ  Peter, ROBATSCHER, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer, BZ  Emanuele, BOSELLI, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy

Contact the author

Keywords

pinot blanc, aroma profile, phenolic profile, sensory analysis

Citation

Related articles…

Streamlining rootstock selection: new indices for efficiency and stability in viticulture

Grapevine rootstocks play a pivotal role in influencing scion vigor, yield, and fruit quality, making their selection critical for sustainable vineyard management.

Climatic zoning and viticulture in Galicia (North West Spain)

Galicia is situated in the NW of the Iberian Peninsula, just north of Portugal and so sharing a mild, maritime climate, certain vine species and a number of long-standing viticultural traditions. In Galicia about 18,000 has are dedicated to wine growing, of which roughly half (46%) correspond to the 6 DOs in the area.

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

Effect of oenological tannins on wine aroma before and after oxidation: a real-time study by coupling sensory (TDS) and chemical (PTR-ToF-MS) analyses

Polyphenols are important compounds involved in many chemical and sensory wine features. In winemaking, adding oenological tannins claims to have positive impacts on wine stability, protection from oxidation and aroma persistence. Polyphenols are antioxidant compounds by either scavenging reactive oxygen and nitrogen species or chelating Fe2+ ions (1). However, as tannins oxidation leads to the formation of highly reactive species (i.e. ortho-quinones), it is still unclear if they have an effective role toward oxidation of wine aromas (2). In this work, we aim at studying the effect of two commercial tannins (proanthocyanidins, ellagitannins) on red wine flavour (mainly aroma) before and after air exposition.

Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

In this study, a soil mapping methodology at subplot level (scale 1:5000) for vineyard soils was developed. The aim of this mapping method was to establish mapping units, which could be used as basic units for ‘terroir’ characterisation and vineyard management (precision viticulture).