Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of addition of fumaric acid and glutathion at the end of alcoholic fermentation on Cabernet-Sauvignon wine

Impact of addition of fumaric acid and glutathion at the end of alcoholic fermentation on Cabernet-Sauvignon wine

Abstract

Viticulture and oenology face two major challenges today, climate change and the reduction in the use of inputs. Climate change induces low acidity and microbiologically less stable wines (1), implying more important sulfur dioxide doses to protect wines. This is incompatible with the reduction of inputs. Fumaric acid (FA) is known for its high acidifying power and its bacteriostatic properties (2) and glutathione (GSH) for its antioxidant power (3). FA combined with GSH could solve acidity problems and reduction of sulfur dioxide in wine. The study aims to evaluate the impact of FA and/or GSH addition at the end of alcoholic fermentation (AF) and just before bottling on wine quality compared to sulfite free, sulfited wine control and tartaric acid (TA) acidified wine. This work only presents the impact of addition of FA and GSH at the end of AF on Cabernet Sauvignon wine. Micro-winemakings were conducted with high mature Cabernet Sauvignon grapes. 9kg of grapes were vatted in each tank with 60mg/L sulfur dioxide. Duplicated vats were treated with TA (2.5g/L), FA (2.5g/L tartaric acid eq.), with 50mg/L GSH, with FA (2.5g/L tartaric acid eq.) + GSH (50mg/L) and three tanks were untreated (controls). At bottling, control wines were mixed and half part was added with sulfur dioxide (80mg/L). Oenological parameters, color, phenolic compounds, antioxidant capacities were evaluated at the end of AF, the end of malolactic fermentation (MLF) and 3 months after bottling. A ranking test and sensory profiles were realized on three-months wines. TA and FA addition at end of AF induced a similar decrease of pH. Total acidity was slightly higher in tanks where FA was added. In these same tanks, the MLFs were stopped when they had already started or did not start: MLFs were delayed for 2-3 months. Wines treated with FA produced 100% more lactic acid than control and TA-acidified wines. Color differences were observed in three-months wines after AF addition. The sulfited control was the lightest with more yellow hue and the wines with added FA were the darkest ones. Total phenolic compounds (total phenolic index and Folin-Ciocalteu analysis) were slightly lower in wines treated with FA and/or GSH. Total tannins were not affected by treatments unlike total anthocyanins. Their content in wine treated with FA without GSH was the lowest. In contrast, addition of GSH had a protective effect on total free anthocyanins. Antioxidant capacities were similar in all wines. Concerning organoleptic quality of wines, the ranking test on overall quality did not show differences but FA acidified wine was the best ranked. Sensory profils highlighted that sulfited control was less intense with more yellow hue. Acidified wines, especially with TA, and GSH added wine were slightly more aromatic than control wines. Addition of FA at the end of AF (2.5g/L tartaric acid eq.) allowed to delay MLF and produced 100% more lactic acid than control wines.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Claire Payan

Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France and Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany,Anne-laure GANCEL, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France  Monika CHRISTMANN, Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany  Pierre-Louis TEISSEDRE, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France

Contact the author

Keywords

fumaric acid, glutathione, color, phenolic compounds, organoleptic quality

Citation

Related articles…

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.