Macrowine 2021
IVES 9 IVES Conference Series 9 Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

Abstract

The objective of the present work is to evaluate the impact of three S. cerevisiae strains on the comprehensive aroma profile of Albariño wine along its shelf life.

The strains Lalvin QA23TM, Lalvin SauvyTM and Affinity ECA5TM (Lallemand Bio) fermented a model must containing precursors of polyfunctional mercaptans (PFMs) and a polyphenolic and aroma precursor fraction1 extracted from Albariño grapes. Wines were submitted to accelerated anoxic aging at 50 ºC during 1, 2, 5, 8 weeks and at 75 ºC during 12, 24, 48, 72h of aging, respectively. Fermentative aroma compounds, SO2, Strecker aldehydes, and varietal aroma compounds were determined by GC, using six different analytical methods.

The aroma profiles of the Albariño wines obtained are characterized by low amounts of volatile phenols, vanillin derivatives and TDN precursors and by medium to high levels of linalool, β-damascenone, rose oxide, γ-nona and γ-decalactones, which explain the typical and subtle floral aroma notes associated with Albariño wines2. Levels of linalool faded during aging, but floral notes may be partially compensated by increasing levels of ethyl cinnamate.

The ability of the strains assayed to modulate levels of terpenes and lactones was limited citronellol and rose oxide. They were able to influence slightly but significantly levels of β-damascenone and ethyl cinnamate in aged wines. This suggests that the influence of the strains on floral notes is significant, but not dominant3. In clear contrast, the strains introduced a great variability in the levels of PFMs which mostly remained all along wine shelf life.

Even if aging was carried out under strict anoxic conditions, levels of Strecker aldehydes increased, isobutanal and 2-methylbutanal in a strain-dependent way, suggesting that Strecker degradation of amino acids took place with already present wine α-dicarbonyls. Levels of diacetyl and isovaleric acid increased during aging, in spite of the fact that aging conditions were not adequate for microbial development.

Regarding fermentative compounds, levels of higher alcohols and their acetates, straight and branched chain fatty acids and their ethyl esters as well as Strecker aldehydes were strongly strain-dependent. Except for acetates, differences were maintained during aging or even intensified in the cases of aldehydes and ethyl esters of branched acids.

Finally, aging at 50 and 75 ºC were in general very well correlated, suggesting that aging at 75ºC can satisfactorily predict evolution during aging of many wine components. aging at 75ºC can satisfactorily predict evolution during aging of many wine components, except PFMs and Strecker aldehydes.

S. cerevisiae strains can be used to produce Albariño wines with completely different sensory profiles and different sensory evolutions during aging. While the effects on varietal floral and sweet aroma compounds was just moderate, effects on PFMs and fermentative aroma compounds, including Strecker aldehydes were very large.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marie Denat 

Laboratory for Aroma Analysis and Enology (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Zaragoza (Spain)  ,Vicente FERREIRA, (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragón (IA2), Zaragoza (Spain) Ignacio ONTAÑÓN, (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragon (IA2), Zaragoza (Spain)

Contact the author

Keywords

cerevisiae, fermentation, wine aging, albariño, polyfunctional mercaptans, strecker aldehydes

Citation

Related articles…

The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

Volatile sulphur compounds are a group of impact odorants with low odour thresholds that can contribute both positively and negatively to wine aroma. The varietal thiols, 3MH and 3MHA, are known to contribute positive tropical aromas to white wines and are most abundant in Sauvignon Blanc wines. The group of compounds contributing negative aromas are known as reductive sulphur compounds (RSCs) as they add a reductive aroma of asparagus, cooked vegetables and rotten egg to wines. All these compounds play a part in and are a result of the sulphur pathway in the yeast cell during fermentation and therefore attempting to increase the concentration of the varietal thiols may directly influence the concentration of the RSCs. The varietal thiols and the low molecular weight RSCs are highly volatile and therefore their sensory perception can change rapidly over time.

L’évolution des Appellations d’Origine aux Etats-Unis

Un peu d’histoire pour nous efforcer de mettre le sujet des appellations dans un contexte général. Six cents ans avant Jésus-Christ, le Côte du Rhône était plantée en vignes peu après l’arrivée des Grecs

Application of remote and proximal sensors for precision vineyard management in Valpolicella

The integration of sensor systems in viticulture is significantly improving vineyard management by enabling faster, comprehensive crop data collection across the entire vineyard, supporting more informed viticultural decision-making, and as a result promoting sustainability.

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Influence Of Different Grape Polysaccharides On Phenolic Compounds And Colour Characteristics Of Tempranillo Red Wines

Polysaccharides (PS) are one of the main compounds found in wines, and they come mainly from the grape cell walls or from the yeasts, and they play an important role in the technological and sensory characteristics of wines. Polysaccharides obtained from yeasts have been more studied, especially mannoproteins, since there are commercial products.