Macrowine 2021
IVES 9 IVES Conference Series 9 Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

Abstract

The objective of the present work is to evaluate the impact of three S. cerevisiae strains on the comprehensive aroma profile of Albariño wine along its shelf life.

The strains Lalvin QA23TM, Lalvin SauvyTM and Affinity ECA5TM (Lallemand Bio) fermented a model must containing precursors of polyfunctional mercaptans (PFMs) and a polyphenolic and aroma precursor fraction1 extracted from Albariño grapes. Wines were submitted to accelerated anoxic aging at 50 ºC during 1, 2, 5, 8 weeks and at 75 ºC during 12, 24, 48, 72h of aging, respectively. Fermentative aroma compounds, SO2, Strecker aldehydes, and varietal aroma compounds were determined by GC, using six different analytical methods.

The aroma profiles of the Albariño wines obtained are characterized by low amounts of volatile phenols, vanillin derivatives and TDN precursors and by medium to high levels of linalool, β-damascenone, rose oxide, γ-nona and γ-decalactones, which explain the typical and subtle floral aroma notes associated with Albariño wines2. Levels of linalool faded during aging, but floral notes may be partially compensated by increasing levels of ethyl cinnamate.

The ability of the strains assayed to modulate levels of terpenes and lactones was limited citronellol and rose oxide. They were able to influence slightly but significantly levels of β-damascenone and ethyl cinnamate in aged wines. This suggests that the influence of the strains on floral notes is significant, but not dominant3. In clear contrast, the strains introduced a great variability in the levels of PFMs which mostly remained all along wine shelf life.

Even if aging was carried out under strict anoxic conditions, levels of Strecker aldehydes increased, isobutanal and 2-methylbutanal in a strain-dependent way, suggesting that Strecker degradation of amino acids took place with already present wine α-dicarbonyls. Levels of diacetyl and isovaleric acid increased during aging, in spite of the fact that aging conditions were not adequate for microbial development.

Regarding fermentative compounds, levels of higher alcohols and their acetates, straight and branched chain fatty acids and their ethyl esters as well as Strecker aldehydes were strongly strain-dependent. Except for acetates, differences were maintained during aging or even intensified in the cases of aldehydes and ethyl esters of branched acids.

Finally, aging at 50 and 75 ºC were in general very well correlated, suggesting that aging at 75ºC can satisfactorily predict evolution during aging of many wine components. aging at 75ºC can satisfactorily predict evolution during aging of many wine components, except PFMs and Strecker aldehydes.

S. cerevisiae strains can be used to produce Albariño wines with completely different sensory profiles and different sensory evolutions during aging. While the effects on varietal floral and sweet aroma compounds was just moderate, effects on PFMs and fermentative aroma compounds, including Strecker aldehydes were very large.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marie Denat 

Laboratory for Aroma Analysis and Enology (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Zaragoza (Spain)  ,Vicente FERREIRA, (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragón (IA2), Zaragoza (Spain) Ignacio ONTAÑÓN, (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragon (IA2), Zaragoza (Spain)

Contact the author

Keywords

cerevisiae, fermentation, wine aging, albariño, polyfunctional mercaptans, strecker aldehydes

Citation

Related articles…

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

Use of microorganisms in the disinfection/protection of organic rooted-cuttings from wood pathogens

One of the major problems affecting the viticulture sector is the quantity of plant protection products (especially copper) used to control the main foliar diseases of the vine. The Life Green Grapes project enter in the production context with the aim of reducing the use of fungicides throughout

Sensorial characteristic of single variety red wines from four local variants of Tempranillo

It is well-known that there is a relationship between the “terroir” and the characteristics of grapes and quality of wines. However, adequate grape variety and other cultural factors should be also taken into account

Understanding the impact of climate change on anthocyanin concentrations in Napa Valley Cabernet Sauvignon

Climate change is having a significant impact on the wine industry through more regular drought conditions, fires, and heat events, leading to crop loss. Furthermore, these events can reduce overall quality of the fruit, even when crop yields are not impacted. Anthocyanins are considered one of the most important classes of compounds for red wine production and are known to be sensitive to vine water status and heat events.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.