Macrowine 2021
IVES 9 IVES Conference Series 9 Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

Abstract

The objective of the present work is to evaluate the impact of three S. cerevisiae strains on the comprehensive aroma profile of Albariño wine along its shelf life.

The strains Lalvin QA23TM, Lalvin SauvyTM and Affinity ECA5TM (Lallemand Bio) fermented a model must containing precursors of polyfunctional mercaptans (PFMs) and a polyphenolic and aroma precursor fraction1 extracted from Albariño grapes. Wines were submitted to accelerated anoxic aging at 50 ºC during 1, 2, 5, 8 weeks and at 75 ºC during 12, 24, 48, 72h of aging, respectively. Fermentative aroma compounds, SO2, Strecker aldehydes, and varietal aroma compounds were determined by GC, using six different analytical methods.

The aroma profiles of the Albariño wines obtained are characterized by low amounts of volatile phenols, vanillin derivatives and TDN precursors and by medium to high levels of linalool, β-damascenone, rose oxide, γ-nona and γ-decalactones, which explain the typical and subtle floral aroma notes associated with Albariño wines2. Levels of linalool faded during aging, but floral notes may be partially compensated by increasing levels of ethyl cinnamate.

The ability of the strains assayed to modulate levels of terpenes and lactones was limited citronellol and rose oxide. They were able to influence slightly but significantly levels of β-damascenone and ethyl cinnamate in aged wines. This suggests that the influence of the strains on floral notes is significant, but not dominant3. In clear contrast, the strains introduced a great variability in the levels of PFMs which mostly remained all along wine shelf life.

Even if aging was carried out under strict anoxic conditions, levels of Strecker aldehydes increased, isobutanal and 2-methylbutanal in a strain-dependent way, suggesting that Strecker degradation of amino acids took place with already present wine α-dicarbonyls. Levels of diacetyl and isovaleric acid increased during aging, in spite of the fact that aging conditions were not adequate for microbial development.

Regarding fermentative compounds, levels of higher alcohols and their acetates, straight and branched chain fatty acids and their ethyl esters as well as Strecker aldehydes were strongly strain-dependent. Except for acetates, differences were maintained during aging or even intensified in the cases of aldehydes and ethyl esters of branched acids.

Finally, aging at 50 and 75 ºC were in general very well correlated, suggesting that aging at 75ºC can satisfactorily predict evolution during aging of many wine components. aging at 75ºC can satisfactorily predict evolution during aging of many wine components, except PFMs and Strecker aldehydes.

S. cerevisiae strains can be used to produce Albariño wines with completely different sensory profiles and different sensory evolutions during aging. While the effects on varietal floral and sweet aroma compounds was just moderate, effects on PFMs and fermentative aroma compounds, including Strecker aldehydes were very large.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marie Denat 

Laboratory for Aroma Analysis and Enology (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Zaragoza (Spain)  ,Vicente FERREIRA, (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragón (IA2), Zaragoza (Spain) Ignacio ONTAÑÓN, (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragon (IA2), Zaragoza (Spain)

Contact the author

Keywords

cerevisiae, fermentation, wine aging, albariño, polyfunctional mercaptans, strecker aldehydes

Citation

Related articles…

Variety and climatic effects on quality scores in the Western US winegrowing regions

Wine quality is strongly linked to climate. Quality scores are often driven by climate variation across different winegrowing regions and years, but also influenced by other aspects of terroir, including variety. While recent work has looked at the relationship between quality scores and climate across many European regions, less work has examined New World winegrowing regions. Here we used scores from three major rating systems (Wine Advocate, Wine Enthusiast and Wine Spectator) combined with daily climate and phenology data to understand what drives variation across wine quality scores in major regions of the Western US, including regions in California, Oregon and Washington. We examined effects of variety, region, and in what phenological period climate was most predictive of quality. As in other studies, we found climate, based mainly on growing degree day (GDD) models, was generally associated with quality—with higher GDD associated with higher scores—but variety and region also had strong effects. Effects of region were generally stronger than variety. Certain varieties received the highest scores in only some areas, while other varieties (e.g., Merlot) generally scored lower across regions. Across phenological stages, GDD during budbreak was often most strongly associated with quality. Our results support other studies that warmer periods generally drive high quality wines, but highlight how much region and variety drive variation in scores outside of climate.

Validating a portable ad-hoc fluorescence spectrometer for monitoring phenolic compounds during wine fermentation

Phenolic compounds are fundamental to wine quality, influencing its colour, mouthfeel, stability, and ageing
potential [1]. Their extraction and evolution during fermentation plays a crucial role in determining the final sensory
attributes and requires careful monitoring to guide winemaking decisions.

Malbec wines from Argentina: influence of climate on aromatic components and Organoleptic profile. Is it possible to stablish regional identities?

Malbec grapes have been cultivated for 150 years in Argentina. In the last 20 years Argentinian Malbec wines have emerged as a commercial boom worldwide.

Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Climate is a key variable for grapevine development and berry ripening processes. At mesoscale level, climate spatial variations are often determined empirically, as weather station networks are generally not dense enough to account for local climate variations.

Physiological and performance responses of grapevine rootstocks to water deficit and recovery 

Rootstocks play a key role in the grapevine’s adaptation to the increasing soil water scarcity related to climate change. A pot experiment carried out in 2022 aimed at assessing the physiological responses of seven ungrafted rootstocks to a progressive soil water deficit and a subsequent recovery to field capacity.