Macrowine 2021
IVES 9 IVES Conference Series 9 Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

Abstract

The objective of the present work is to evaluate the impact of three S. cerevisiae strains on the comprehensive aroma profile of Albariño wine along its shelf life.

The strains Lalvin QA23TM, Lalvin SauvyTM and Affinity ECA5TM (Lallemand Bio) fermented a model must containing precursors of polyfunctional mercaptans (PFMs) and a polyphenolic and aroma precursor fraction1 extracted from Albariño grapes. Wines were submitted to accelerated anoxic aging at 50 ºC during 1, 2, 5, 8 weeks and at 75 ºC during 12, 24, 48, 72h of aging, respectively. Fermentative aroma compounds, SO2, Strecker aldehydes, and varietal aroma compounds were determined by GC, using six different analytical methods.

The aroma profiles of the Albariño wines obtained are characterized by low amounts of volatile phenols, vanillin derivatives and TDN precursors and by medium to high levels of linalool, β-damascenone, rose oxide, γ-nona and γ-decalactones, which explain the typical and subtle floral aroma notes associated with Albariño wines2. Levels of linalool faded during aging, but floral notes may be partially compensated by increasing levels of ethyl cinnamate.

The ability of the strains assayed to modulate levels of terpenes and lactones was limited citronellol and rose oxide. They were able to influence slightly but significantly levels of β-damascenone and ethyl cinnamate in aged wines. This suggests that the influence of the strains on floral notes is significant, but not dominant3. In clear contrast, the strains introduced a great variability in the levels of PFMs which mostly remained all along wine shelf life.

Even if aging was carried out under strict anoxic conditions, levels of Strecker aldehydes increased, isobutanal and 2-methylbutanal in a strain-dependent way, suggesting that Strecker degradation of amino acids took place with already present wine α-dicarbonyls. Levels of diacetyl and isovaleric acid increased during aging, in spite of the fact that aging conditions were not adequate for microbial development.

Regarding fermentative compounds, levels of higher alcohols and their acetates, straight and branched chain fatty acids and their ethyl esters as well as Strecker aldehydes were strongly strain-dependent. Except for acetates, differences were maintained during aging or even intensified in the cases of aldehydes and ethyl esters of branched acids.

Finally, aging at 50 and 75 ºC were in general very well correlated, suggesting that aging at 75ºC can satisfactorily predict evolution during aging of many wine components. aging at 75ºC can satisfactorily predict evolution during aging of many wine components, except PFMs and Strecker aldehydes.

S. cerevisiae strains can be used to produce Albariño wines with completely different sensory profiles and different sensory evolutions during aging. While the effects on varietal floral and sweet aroma compounds was just moderate, effects on PFMs and fermentative aroma compounds, including Strecker aldehydes were very large.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marie Denat 

Laboratory for Aroma Analysis and Enology (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Zaragoza (Spain)  ,Vicente FERREIRA, (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragón (IA2), Zaragoza (Spain) Ignacio ONTAÑÓN, (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragon (IA2), Zaragoza (Spain)

Contact the author

Keywords

cerevisiae, fermentation, wine aging, albariño, polyfunctional mercaptans, strecker aldehydes

Citation

Related articles…

Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

La Région Piemonte a commencé en 1994 un projet de caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie) par une équipe pluridisciplinaire avec la participation de 6 Instituts de recherche qui travaillent dans la Région et la collaboration de 2 Associations des producteurs viticoles et des organismes de valorisation du vin Barolo.

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]

Remote sensing applications in viticulture: recent advances and new opportunities

Remote sensing applications in viticulture have been a research theme now for nearly two decades, becoming a valuable tool for vineyard management. Metrics produced using remotely sensed images of vineyards have yielded relationships with grape quality and yield that can help optimise vineyard performance

Understanding novel germplasm solutions: sensory, chemical and preliminary hedonic insights of wines made from Australian first-generation mildew resistant cultivars

One of the major issues for wine production in Australia is the management and eradication of powdery and downy mildews and the associated yield losses they present, costing Australian grape growers upwards of AUD$160M per annum [1].

Root water uptake patterns in rootstock-scion interactions influence grape water use strategies in a Mediterranean vineyard

Increasing drought is the most important impact of the ongoing climate change in the Mediterranean Basin, and it is predicted to result in productivity decreases and changes in grape quality.