Macrowine 2021
IVES 9 IVES Conference Series 9 Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

Abstract

The objective of the present work is to evaluate the impact of three S. cerevisiae strains on the comprehensive aroma profile of Albariño wine along its shelf life.

The strains Lalvin QA23TM, Lalvin SauvyTM and Affinity ECA5TM (Lallemand Bio) fermented a model must containing precursors of polyfunctional mercaptans (PFMs) and a polyphenolic and aroma precursor fraction1 extracted from Albariño grapes. Wines were submitted to accelerated anoxic aging at 50 ºC during 1, 2, 5, 8 weeks and at 75 ºC during 12, 24, 48, 72h of aging, respectively. Fermentative aroma compounds, SO2, Strecker aldehydes, and varietal aroma compounds were determined by GC, using six different analytical methods.

The aroma profiles of the Albariño wines obtained are characterized by low amounts of volatile phenols, vanillin derivatives and TDN precursors and by medium to high levels of linalool, β-damascenone, rose oxide, γ-nona and γ-decalactones, which explain the typical and subtle floral aroma notes associated with Albariño wines2. Levels of linalool faded during aging, but floral notes may be partially compensated by increasing levels of ethyl cinnamate.

The ability of the strains assayed to modulate levels of terpenes and lactones was limited citronellol and rose oxide. They were able to influence slightly but significantly levels of β-damascenone and ethyl cinnamate in aged wines. This suggests that the influence of the strains on floral notes is significant, but not dominant3. In clear contrast, the strains introduced a great variability in the levels of PFMs which mostly remained all along wine shelf life.

Even if aging was carried out under strict anoxic conditions, levels of Strecker aldehydes increased, isobutanal and 2-methylbutanal in a strain-dependent way, suggesting that Strecker degradation of amino acids took place with already present wine α-dicarbonyls. Levels of diacetyl and isovaleric acid increased during aging, in spite of the fact that aging conditions were not adequate for microbial development.

Regarding fermentative compounds, levels of higher alcohols and their acetates, straight and branched chain fatty acids and their ethyl esters as well as Strecker aldehydes were strongly strain-dependent. Except for acetates, differences were maintained during aging or even intensified in the cases of aldehydes and ethyl esters of branched acids.

Finally, aging at 50 and 75 ºC were in general very well correlated, suggesting that aging at 75ºC can satisfactorily predict evolution during aging of many wine components. aging at 75ºC can satisfactorily predict evolution during aging of many wine components, except PFMs and Strecker aldehydes.

S. cerevisiae strains can be used to produce Albariño wines with completely different sensory profiles and different sensory evolutions during aging. While the effects on varietal floral and sweet aroma compounds was just moderate, effects on PFMs and fermentative aroma compounds, including Strecker aldehydes were very large.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marie Denat 

Laboratory for Aroma Analysis and Enology (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Zaragoza (Spain)  ,Vicente FERREIRA, (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragón (IA2), Zaragoza (Spain) Ignacio ONTAÑÓN, (LAAE), University of Zaragoza, Instituto Agroalimentario de Aragon (IA2), Zaragoza (Spain)

Contact the author

Keywords

cerevisiae, fermentation, wine aging, albariño, polyfunctional mercaptans, strecker aldehydes

Citation

Related articles…

Approaches for estimating the age of old vineyards in Campo de Borja

Determining the age of a vineyard is essential for understanding its influence on wine quality and characteristics.

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide.

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).

PIWIs’ variation in drought response under semi-controlled conditions 

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress.

Ultrasound and microwave techniques to accelerate the release of oak wood compounds in wine aging process

Aging process is an essential stage in the improvement of wine quality. This process is usually performed by contact with oak wood whose compounds are released and transferred to wine, acquiring typical aging bouquet. Although the use of oak chips is a practice generally accepted as alternative to barrels to shorten aging process, the application of emerging technologies is being unfolded to accelerate this stage.