Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of the different cork stoppers and sulfur dose in champagne quality

Influence of the different cork stoppers and sulfur dose in champagne quality


As is well known, Champagne is a product of the highest quality recognized in the international market. Champagne is a type of sparkling wine made in the Champagne region (France) using the traditional method of champenoise. Aging in the bottle is the final stage before being consumed, and it is considered a time of maturation in which many chemical and sensory changes occur (1). In addition, the stoppers have a very important influence on the quality of the product during bottle aging (2). Today there are different types of corks with different types of oxygen permeabilities (3). This oxygen transfer rate (OTR) through the cork can cause changes in the color, in the aromatic composition and in the organoleptic sensations of the Champagne, causing a loss of its quality (3, 4). For all these reasons, the main objective of this work is to evaluate the effect of different types of cork stoppers in Champagne with different doses of sulfur (added in bottling) for a year. To carry out the study, five types of corks (C1, C2, C3, C4 and C5) with increasing OTRs values and the control with sheet metal closure (Control), and three different doses of sulfur (0, 10 and 20 mg/L) were used. Of all of them, the basic parameters, color and Cielab coordinates, CO2 pressure, aromatic composition (fermentative, oxidative and reduction aromas), and sensory analysis were analyzed at each of the four sampling points. The analysis times were after bottling (T0) and after 3, 6, 12 months of aging in the bottle (T3, T6, T12). The results showed that the parameter ‘time’ was the main factor in producing differences between the samples, followed by the doses of sulfur and type of cork. In general, the basic parameters of champagne did not show significant differences except for total sulfur content. In general, the color, the CO2 parameters and especially the aromatic composition changed over time, showing the main changes after 12 months in the bottle. The fermentation aromas were decreasing, and the oxidation and reduction aromas were increasing over time. The samples with the highest dose of sulfur (20 mg/L) were less evolved, however they showed greater reductions. In addition, C5 and C3 corks with were the corks that best preserved Champagne in relation to the preservation of fermentative aromas, and in achieving a better balance between oxidation-reduction conditions, after 12 months of aging. However, the C2 was the cork that had the worst preservation of fermentative aromas and the greatest oxidation caused the Champagne. Finally, the sensory analysis on time 12 months corroborated analytics, the best valued Champagne being those closed with C3 and C5 corks, and the worst with C2. Therefore, a good choice about the type of cork and the dose of sulfur in bottling can prolong its optimal moment of consumption in time, while preserving its quality.


Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article


Ana Maria Mislata 

1. VITEC – Centre Tecnològic del Vi, Ctra. Porrera Km 1, 43730 Falset (Tarragona), Spain 2. Instrumental Sensometry (i-Sens), Department of Analytical Chemistry and Organic  Chemistry, Campus Sescelades, Universitat Rovira i Virgili, Tarragona, 43007, Spain ,Michelle Rodríguez 2; Christophe Loisel 3; Miquel Puxeu 1; Enric Nart 1; Sergi De Lamo 1; Montserrat Mestres 2 and Raúl Ferrer-Gallego 1  1. VITEC – Centre Tecnològic del Vi, Ctra. Porrera Km.1, 43730 Falset (Tarragona), Spain 2. Instrumental Sensometry (i-Sens), Department of Analytical Chemistry and Organic  Chemistry, Campus Sescelades, Universitat Rovira i Virgili, Tarragona, 43007, Spain 3. DIAM Bouchage SAS-Espace Tech Ulrich, 66400 Ceret, France

Contact the author


champagne, corks, sulfurous, otr, color, aromatic compounds, sensory analysis


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.