Macrowine 2021
IVES 9 IVES Conference Series 9 The future of DMS precursors during alcoholic fermentation: impact of yeast assimilable nitrogen levels on the contents of DMSp in young wines

The future of DMS precursors during alcoholic fermentation: impact of yeast assimilable nitrogen levels on the contents of DMSp in young wines

Abstract

Some red wines develop a “bouquet” during ageing. This complex aroma is linked to quality by wine tasters1. The presence of dimethylsulfide (DMS) in those wines is implicated in the expression of “bouquet typicity”2. DMS is a result of the hydrolysis of its precursors. Several molecules, including S-methylmethionine, could constitute the precursors of DMS3. DMS can be liberated by alkaline hydrolysis and quantified by SPME-GC-MS4. The releasable DMS is designated by “DMSp”. The DMSp levels in grapes are 20 to 30 times higher than those observed in young wines5. Our question is : “What happens during the stages of fermentation?”First, DMSp levels were studied during a small-scale winemaking process and were measured in musts, in wine after alcoholic fermentation (AF) and after malolactic fermentation (MLF). Then, to understand the mechanism of the DMSp degradation, synthetic must was used with various levels of YAN and different pools of inorganic and organic nitrogen such as amino acids. Synthetic musts were supplemented by one of the known DMS precursor (S-methylmethionine), inoculated with S. cerevisiae and the fermentations were monitored by evaluating CO2 evolution.During AF, around 90% of DMSp is degraded by the action of yeast. The MLF consumed a little DMSp but it is negligible compared to AF. The link between DMSp and nitrogen would generate a variable consumption of DMSp during AF. Then, DMSp is consumed at the beginning of alcoholic fermentation during the yeast growth step and the level of consumption depends of the constitution of YAN. The several pools of nitrogen substances of YAN tested shows various results about the consumption or conservation of DMSp during AF.Finally, the assays in laboratory to try to control DMSp levels in young wine will help the winemakers to keep the ageing potential of red wine and maintain a high quality of wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Justine Laboyrie

University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France,Marina Bely, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France Nicolas Le Menn, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France Stéphanie Marchand, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France

Contact the author

Keywords

wine ageing potential, dimethylsulfide, s-methylmethionine, alcoholic fermentation, yeast assimilable nitrogen

Citation

Related articles…

Viticultural zoning using spatial analysis: characterizing terroirs over the Southern part of the Côtes-du-Rhône appellation (France)

Les approches du terroir en tant qu’entité géographique (zonages) connaissent un développement accru récent en lien avec l’essor des SIG. Les méthodes, les objectifs et les critères utilisés varient considérablement selon les études.

Copper, iron and zinc in surface layer of Primošten vineyard soils

Long-term use of copper fungicides causes increased accumulation of total copper in the surface layer of vineyard soils. Many of authors has researched the anthropogenic influx of copper in such soils, which can result in environmental risks.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Climate projections over France wine-growing region and its potential impact on phenology

Climate change represents a major challenge for the French wine industry. Climatic conditions in French vineyards have already changed and will continue to evolve. One of the notable effects on grapevine is the advancing growing season. The aim of this study is to characterise the evolution of agroclimatic indicators (Huglin index, number of hot days, mean temperature, cumulative rainfall and number of rainy days during the growing season) at French wine-growing regions scale between 1980 and 2019 using gridded data (8 km resolution, SAFRAN) and for the middle of the 21th century (2046-2065) with 21 GCMs statistically debiased and downscaled at 8 km. A set of three phenological models were used to simulate the budburst (BRIN, Smoothed-Utah), flowering, veraison and theoretical maturity (GFV and GSR) stages for two grape varieties (Chardonnay and Cabernet-Sauvignon) over the whole period studied. All the French wine-growing regions show an increase in both temperatures during the growing season and Huglin index. This increase is accompanied by an advance in the simulated flowering (+3 to +9 days), veraison (+6 to +13 days) and theoretical maturity (+6 to +16 days) stages, which are more noticeable in the north-eastern part of France. The climate projections unanimously show, for all the GCMs considered, a clear increase in the Huglin index (+662 to 771 °C.days compared to the 1980-1999 period) and in the number of hot days (+5.6 to 22.6 days) in all the wine regions studied. Regarding rainfall, the expected evolution remains very uncertain due to the heterogeneity of the climates simulated by the 21 models. Only 4 regions out of 21 have a significant decrease in the number of rainy days during the growing season. The two budburst models show a strong divergence in the evolution of this stage with an average difference of 18 days between the two models on all grapevine regions. The theoretical maturity is the most impacted stage with a potential advance between 40 and 23 days according to wine-growing regions.

Zonage vitivinicole: recherches et considérations initiales sur une proposition de “nouvelle” méthodologie d'”évaluation de la qualité” du produit tel qu’élément base pour le zonage aussi

Si on part de l’introduction que l’activité vitivinicole maintenant plus que jamais doit être une activité d’entreprenariat introduite de mieux en mieux sur le territoire et donc effectuée pour rendre maximal le Profit