Macrowine 2021
IVES 9 IVES Conference Series 9 The future of DMS precursors during alcoholic fermentation: impact of yeast assimilable nitrogen levels on the contents of DMSp in young wines

The future of DMS precursors during alcoholic fermentation: impact of yeast assimilable nitrogen levels on the contents of DMSp in young wines

Abstract

Some red wines develop a “bouquet” during ageing. This complex aroma is linked to quality by wine tasters1. The presence of dimethylsulfide (DMS) in those wines is implicated in the expression of “bouquet typicity”2. DMS is a result of the hydrolysis of its precursors. Several molecules, including S-methylmethionine, could constitute the precursors of DMS3. DMS can be liberated by alkaline hydrolysis and quantified by SPME-GC-MS4. The releasable DMS is designated by “DMSp”. The DMSp levels in grapes are 20 to 30 times higher than those observed in young wines5. Our question is : “What happens during the stages of fermentation?”First, DMSp levels were studied during a small-scale winemaking process and were measured in musts, in wine after alcoholic fermentation (AF) and after malolactic fermentation (MLF). Then, to understand the mechanism of the DMSp degradation, synthetic must was used with various levels of YAN and different pools of inorganic and organic nitrogen such as amino acids. Synthetic musts were supplemented by one of the known DMS precursor (S-methylmethionine), inoculated with S. cerevisiae and the fermentations were monitored by evaluating CO2 evolution.During AF, around 90% of DMSp is degraded by the action of yeast. The MLF consumed a little DMSp but it is negligible compared to AF. The link between DMSp and nitrogen would generate a variable consumption of DMSp during AF. Then, DMSp is consumed at the beginning of alcoholic fermentation during the yeast growth step and the level of consumption depends of the constitution of YAN. The several pools of nitrogen substances of YAN tested shows various results about the consumption or conservation of DMSp during AF.Finally, the assays in laboratory to try to control DMSp levels in young wine will help the winemakers to keep the ageing potential of red wine and maintain a high quality of wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Justine Laboyrie

University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France,Marina Bely, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France Nicolas Le Menn, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France Stéphanie Marchand, University of Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France

Contact the author

Keywords

wine ageing potential, dimethylsulfide, s-methylmethionine, alcoholic fermentation, yeast assimilable nitrogen

Citation

Related articles…

Effect of different plant fibers on the elimination of undesirable compounds in red wine 

The presence of undesirable compounds in wines, such as ota, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. Additionally, an excess of tannins can produce an undesirable increase in the astringency and bitterness of the wine, so tannins are also a target for reduction. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity.

Tutela legale delle denominazioni di origine nel mondo (con aspetti applicativi)

Uno degli aspetti più importanti nel commercio internazionale dei vini a denominazione è quello del riconoscimento dei diritti di esclusiva garantiti sui e dal territorio geografico d’o­rigine. Al fine di cautelarsi nei confronti della sempre più agguerrita concorrenza mondiale, è opportuno adottare adeguate protezioni ufficiali e legali delle denominazioni che possono derivare sia dalla “naturalità” del prodotto stesso che dalla “originalità” più particolare.

The suitability for viticulture at varying altitudes: a study of grapevine ripening in the Italian Alps

Planting vineyards in cooler climates has been used over recent years as
a strategy to counter the climatic shifts caused by climate change. A move towards higher altitudes in hilly and mountainous wine regions may provide a solution to deleterious effects that increased ambient temperatures have on wine quality. Until now, the influences of higher altitudes and their climates, as well as their effect on vine growing cycles, still holds a lot of scientific uncertainty. The transnational EU-funded project REBECKA (Interreg V-A IT-AT: ITAT1002, duration: 2017-2019) has the objective to develop a regional valuation method to rate the suitability for viticulture in South Tyrol (Italy) and Carinthia (Austria). Preliminary surveys were performed regarding the effects of altitude on ripening performance of the cultivar Pinot Noir.

Effect of must temperature and aspergillopepsin-I supplementation on PR-protein derived peptides

Protein instability in wines is challenging, and despite many efforts to find satisfactory alternatives to bentonite, both in terms of stability and quality, the solutions are limited in the wine industry.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.