Macrowine 2021
IVES 9 IVES Conference Series 9 Revealing the origins of old bordeaux wines using terpene quantification

Revealing the origins of old bordeaux wines using terpene quantification

Abstract

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing (1). Bordeaux red wine ageing bouquet is defined by the association of several odours including fresh and fruity notes sometimes related to specific compounds. Some of those molecules, such as thiols or DMS are issued from precursors produced by the grapevine (2–5). On the another hand, several compounds such as terpenes are produced by the grape as precursors (6) and released during ageing. The aroma of aged wines , the “bouquet” could originate directly in grapes thanks to flavour precursors (7). In this study we addressed the questions: What is the most important between vintage and terroir in wine identity? And is there a molecular signature in the aroma of old wines linked to grape origin and revealed during ageing?Over 80 volatile molecules including DMS, esters, terpenes, mint terpenes, C13-norisoprénoïdes, volatiles oak wood compounds and off-flavors were quantified by GC/MS in 80 red Bordeaux wines (7 domains x 12 vintages between 1990 and 2007). A statistical analysis was performed on the dataset. First, the presence of most of the targeted molecules were identified in the 80 wines and the link between their contents and the wines’ ages was evaluated. After that, the hypothesis of wine identity being linked to wood contact or off-flavors was rejected. Next, principal component analysis (PCA) on the data showed a separation between the 7 vineyards studied. Each Bordeaux area and domain could be represented by one or several molecules. Then, a discriminant factor analysis (DFA) showed the weight of each compound in the separation. The terpenes, in particular terpinen-1-ol, terpinen-4-ol and α-terpinene, were implicated to the partitioning of vineyards. A degradation of the separation of the wines is observed if terpenes levels are excluded from the data set. Nevertheless, the separation is not effective based on solely terpene levels. The profile of terpenes in the molecular signature of these Bordeaux old wines is important but the signature of studied domains is incomplete without the other compounds.These results highlight the specificity of productions areas and the existence of a molecular identity unique to each domain beyond the effect of vintage and the passage of years. The terroir and blending practiced in Bordeaux are probably involved in this singular molecular identity.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Justine Laboyrie

Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France ,Davide Slaghenaufi, Department of Biotechnology, University of Verona 37029 San Pietro in Cariano, Italy Giovanni Luzzini, Department of Biotechnology, University of Verona 37029 San Pietro in Cariano, Italy Maurizio Ugliano, Department of Biotechnology, University of Verona 37029 San Pietro in Cariano, Italy Laurent Riquier, Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France Stéphanie Marchand, Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author

Keywords

red wines identity, ageing, gas chromatography analysis, terpenes, terroir

Citation

Related articles…

The limonene-derived mint aroma compounds in red wines. Recent advances on analytical, chemical aspects and sensory aspects

In recent years, the ageing bouquet of red Bordeaux wines has been partially unveiled by a chemical and sensory point of view1–3. Minty and fresh notes were found to play a key role in the definition of this complex concept, moreover the freshness dimension in fine aged red wines plays an important role in typicity judgement by wine professionals

Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Red grapes contain significant amounts of phenolic compounds, known to contribute to wine quality and to provide important health benefits. Berry skin phenolics can be elicited by plant hormones. The aim of this work was to increase the content of anthocyanins and trans-resveratrol in five red varieties cultured in Argentina: Malbec (M), Bonarda (B), Syrah (S), Cabernet Sauvignon (CS), and Pinot Noir (PN), in two different growing regions: Santa Rosa (SR) and Valle de Uco (VU), by applying a post-veraison hormonal treatment with abscisic acid (ABA) and methyl jasmonate (MeJA).

The effect of wine cork closures on volatile sulfur compounds during accelerated post-bottle ageing in Shiraz wines

Reduced off-flavour is an organoleptic defect due to an excess of volatile sulfur compounds (VSC) in wine and often happening in Shiraz wines. This off-flavour is a direct consequence of the lack of oxygen flow during winemaking and bottle storage. Therefore, wine closure could have a direct impact on the formation of VSC due to the oxygen transfer rate that can modulate their levels. Even if dimethylsulfide (DMS) contributes to reduced off-flavor, it is also a fruity note enhancer in wine and its evolution during wine ageing is not well understood.

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).