Macrowine 2021
IVES 9 IVES Conference Series 9 Revealing the origins of old bordeaux wines using terpene quantification

Revealing the origins of old bordeaux wines using terpene quantification

Abstract

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing (1). Bordeaux red wine ageing bouquet is defined by the association of several odours including fresh and fruity notes sometimes related to specific compounds. Some of those molecules, such as thiols or DMS are issued from precursors produced by the grapevine (2–5). On the another hand, several compounds such as terpenes are produced by the grape as precursors (6) and released during ageing. The aroma of aged wines , the “bouquet” could originate directly in grapes thanks to flavour precursors (7). In this study we addressed the questions: What is the most important between vintage and terroir in wine identity? And is there a molecular signature in the aroma of old wines linked to grape origin and revealed during ageing?Over 80 volatile molecules including DMS, esters, terpenes, mint terpenes, C13-norisoprénoïdes, volatiles oak wood compounds and off-flavors were quantified by GC/MS in 80 red Bordeaux wines (7 domains x 12 vintages between 1990 and 2007). A statistical analysis was performed on the dataset. First, the presence of most of the targeted molecules were identified in the 80 wines and the link between their contents and the wines’ ages was evaluated. After that, the hypothesis of wine identity being linked to wood contact or off-flavors was rejected. Next, principal component analysis (PCA) on the data showed a separation between the 7 vineyards studied. Each Bordeaux area and domain could be represented by one or several molecules. Then, a discriminant factor analysis (DFA) showed the weight of each compound in the separation. The terpenes, in particular terpinen-1-ol, terpinen-4-ol and α-terpinene, were implicated to the partitioning of vineyards. A degradation of the separation of the wines is observed if terpenes levels are excluded from the data set. Nevertheless, the separation is not effective based on solely terpene levels. The profile of terpenes in the molecular signature of these Bordeaux old wines is important but the signature of studied domains is incomplete without the other compounds.These results highlight the specificity of productions areas and the existence of a molecular identity unique to each domain beyond the effect of vintage and the passage of years. The terroir and blending practiced in Bordeaux are probably involved in this singular molecular identity.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Justine Laboyrie

Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France ,Davide Slaghenaufi, Department of Biotechnology, University of Verona 37029 San Pietro in Cariano, Italy Giovanni Luzzini, Department of Biotechnology, University of Verona 37029 San Pietro in Cariano, Italy Maurizio Ugliano, Department of Biotechnology, University of Verona 37029 San Pietro in Cariano, Italy Laurent Riquier, Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France Stéphanie Marchand, Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author

Keywords

red wines identity, ageing, gas chromatography analysis, terpenes, terroir

Citation

Related articles…

Pioneering dynamic AgriVoltaics in viticulture: enhancing grapevine productivity, wine quality and climate protection through agronomical steering in a large-scale field study

Context and purpose of the study. Climate change threatens traditional winegrowing regions, with about 90% of areas like southern France at risk by the end of the century due to heatwaves and droughts.

Effetti del cambiamento climatico europeo sulle epoche di vendemmia in Abruzzo

I dati termo-pluviometrici del periodo 1971-2009 registrati da alcune stazioni della regione Abruzzo sono stati analizzati adottando alcuni semplici indici climatici e bioclimatici. E’ stato valutato il verificarsi di cambiamenti climatici così come le loro ripercussioni sulle date di inizio vendemmia.

Artificial intelligence-driven classification method of grapevine phenology using conventional RGB imaging

The phenological stage of the grapevine (Vitis vinifera L.) represents a fundamental element in vineyard management, since it determines key practices such as fertilization, irrigation, phytosanitary interventions and optimal harvest time (Mullins et al., 1992).

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

The effects of cover cropping systems on vine physiology, berry and wine quality in a climate change scenario in Switzerland

Sustainable weed control with little detrimental effects on vine physiology, yield, berry quality, soil structure, health and biodiversity is a key factor in vineyard management. Few options are available to avoid herbicide utilization and minimize negative effects of frequent tillage on soil quality. The present project aims to investigate and develop different cover management strategies in a cool climate viticultural region in Switzerland. The impact of different treatments on vine, must and wine has been studied in an experimental vineyard in Changins, Switzerland for one year and will be continued over the next three years.