Macrowine 2021
IVES 9 IVES Conference Series 9 Revealing the origins of old bordeaux wines using terpene quantification

Revealing the origins of old bordeaux wines using terpene quantification

Abstract

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing (1). Bordeaux red wine ageing bouquet is defined by the association of several odours including fresh and fruity notes sometimes related to specific compounds. Some of those molecules, such as thiols or DMS are issued from precursors produced by the grapevine (2–5). On the another hand, several compounds such as terpenes are produced by the grape as precursors (6) and released during ageing. The aroma of aged wines , the “bouquet” could originate directly in grapes thanks to flavour precursors (7). In this study we addressed the questions: What is the most important between vintage and terroir in wine identity? And is there a molecular signature in the aroma of old wines linked to grape origin and revealed during ageing?Over 80 volatile molecules including DMS, esters, terpenes, mint terpenes, C13-norisoprénoïdes, volatiles oak wood compounds and off-flavors were quantified by GC/MS in 80 red Bordeaux wines (7 domains x 12 vintages between 1990 and 2007). A statistical analysis was performed on the dataset. First, the presence of most of the targeted molecules were identified in the 80 wines and the link between their contents and the wines’ ages was evaluated. After that, the hypothesis of wine identity being linked to wood contact or off-flavors was rejected. Next, principal component analysis (PCA) on the data showed a separation between the 7 vineyards studied. Each Bordeaux area and domain could be represented by one or several molecules. Then, a discriminant factor analysis (DFA) showed the weight of each compound in the separation. The terpenes, in particular terpinen-1-ol, terpinen-4-ol and α-terpinene, were implicated to the partitioning of vineyards. A degradation of the separation of the wines is observed if terpenes levels are excluded from the data set. Nevertheless, the separation is not effective based on solely terpene levels. The profile of terpenes in the molecular signature of these Bordeaux old wines is important but the signature of studied domains is incomplete without the other compounds.These results highlight the specificity of productions areas and the existence of a molecular identity unique to each domain beyond the effect of vintage and the passage of years. The terroir and blending practiced in Bordeaux are probably involved in this singular molecular identity.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Justine Laboyrie

Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France ,Davide Slaghenaufi, Department of Biotechnology, University of Verona 37029 San Pietro in Cariano, Italy Giovanni Luzzini, Department of Biotechnology, University of Verona 37029 San Pietro in Cariano, Italy Maurizio Ugliano, Department of Biotechnology, University of Verona 37029 San Pietro in Cariano, Italy Laurent Riquier, Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France Stéphanie Marchand, Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author

Keywords

red wines identity, ageing, gas chromatography analysis, terpenes, terroir

Citation

Related articles…

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.

Use of artificial intelligence for the prediction of microbial diseases of grapevine and optimisation of fungicide application

Plasmopara viticola, the causal agent of downy mildew (DM), and Uncinula necator, the causal agent of powdery mildew (PM), are two of the main phytopathogenic microorganisms causing major economic losses in the primary sector, especially in the wine sector, by wilting bunches and leaves with a consequent decrease in the photosynthetic rate of the plant and in the annual yield. Currently, the most widespread methods for planning spraying are based on the 3-10 rule, which states that the first application should take place when: (i) the air temperature is greater than 10°C; (ii) shoots are equal or greater than 10 cm; and (iii) a minimum of 10 mm rainfall within 24–48 hours has occurred, or at the beginning of the bud break with periodic applications according to the manufacturer’s instructions.

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Basic Terroir Unit (U.T.B.) and quality control label for honey; making the designations of origin (A.O.C) and« crus » more coherent

Considérant d’une part la judicieuse mise au point d’un label de qualité contrôlée des miels suisses (STÖCKLI et al. 1997), considérant d’autre part l’élaboration d’une carte des paysages végétaux (HEGG et al. 1993),