Macrowine 2021
IVES 9 IVES Conference Series 9 Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics

Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics


Rosé is leading the fastest growth wine category which hit a 40% increase since 2002. France accounts for over a third (34%) of global consumption followed by the US at 16%. The majority of rose wines are bottled in clear bottles. There are a range of factors that impact the selection of bottle color for wine storage, but consumer’s acceptance seems to be one factor where market forces drive the use of lighter colored glass bottles over dark green, brown or blue glass. Post-bottling storage is also a critical phase for rosé wine. Bottled wine can be exposed to UV-visible light and temperature fluctuations for relatively long periods of time in retail stores, restaurants and domestic settings, resulting in degradation with color and aroma changes. This research studied the impact of bottle color, light exposure and temperature on rosé wine quality. Four rosé wines with different organoleptic characteristics and chemical composition (color, phenolic, sugar and alcohol content) were bottled in clear and green bottles and stored under three different light conditions (darkness, fluorescent bulb and cool white LED bulb) at cellar (15C) and room temperature (20C). Color, basic chemical analysis, aroma profile, phenolics and reductive compounds were determined after 0, 3 and 6 months of storage. The color and phenolic composition were determined by spectrophotometric analysis and RP-HPLC. Potential changes in aroma were determined through volatile screening of the wines using SPME-GC-MS. Reductive compounds were also determined by SPME-GC-MS. Changes in wines were detectable after 3 months and more noticeable after 6 months of storage. Basic chemical analysis showed a decrease in free and total SO2 for all the samples analyzed with the largest impact found on the samples stored under fluorescent light. Regarding color, a decrease in intensity was found in the wines stored under both light conditions over time, particularly those in clear bottles. An increase in the percentage of yellow and a decrease in the percentage of red was significant in the wines stored at 20C under fluorescent light and more pronounced in the wines with lighter color/lower phenolic content. This may be due to oxidation reactions ocurring under these conditions. Wines stored in the dark showed no significant impact on the color. There results were supported by RP-HPLC data, showing an increase in polymeric phenols and pigments and a decrease in monomeric anthocyanins. For aroma profiles, significant changes were found between the starting wines and the different time points. When focusing on aroma only, bottle color showed a smaller impact than storage temperature.Overall, all variables studied impacted rosé wine aging significantly. However, higher temperature in combination with clear glass bottles under fluorescent light were the most detrimental to rosé wine aging compared to low temperature and darkness that showed the smallest impact.


Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article


Cristina Medina-Plaza

University of California, Davis,Aubrey DUBOIS- Oregon State University Elisabeth TOMASINO- Oregon State University Anita OBERHOLSTER- University of California, Davis

Contact the author


rose, wine, storage, shelf-life, light, temperature, bottle color


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.