Macrowine 2021
IVES 9 IVES Conference Series 9 Know thy enemy: oxygen or storage temperature?

Know thy enemy: oxygen or storage temperature?

Abstract

It is well known that high oxygen levels and high ageing temperatures are detrimental to white wine’s composition and ageing capacity. However, these results, though valuable, have often been obtained under extreme temperatures of oxygen levels that wine will normally not be exposed to (Cejudo-Bastante et al.,2013). Previous work performed have shown that multiple oxygen additions to wine can lead to the degradation of certain important compounds such as varietal thiols and SO2 (Coetzee et al., 2012). However, the interactive effects between oxygen additions normally experienced during bottling and temperatures that wine are exposed to during bottle ageing, have not received sufficient attention, especially in terms of sensorial development of the wine. The main aim of this work was thus to investigate the effects of different oxygen levels at bottling and subsequent bottle ageing temperatures on white wine’s chemical and sensorial development over time. Sauvignon Blanc and Chenin Blanc wines were both produced under relative reductive conditions and then bottled at 0.3, 3 and 6 mg/L total packaged oxygen and closed under screw cap. These wines were then stored at either 15 or 25 °C for 6 and 12 months and analysed for a wide array of compounds (antioxidants, colour, varietal thiols and major volatiles) as well as sensorially with descriptive analyses using a trained panel. Oxygen levels in the wine decreased more rapidly in the wines stored at 25 °C. However, the parameter tested that was influenced by the different oxygen additions to the largest extent was the SO2 levels, which decreased the most at the highest oxygen levels. Time was the largest contributor in terms of changes in the yellow/brown colour and glutathione levels. Varietal thiols levels were not affected by the oxygen levels, but higher temperatures led to more rapid acid hydrolyses of 3MHA in the case of the Chenin Blanc wines. Certain fruity esters also decreased quicker at the higher storage temperatures. Time and especially storage temperature had the largest effects on the sensory composition of the Sauvignon Blanc wines, with oxygen influencing it to almost no extent. Higher storage temperatures led to less fruity aromas such as grapefruit and passion fruit after 12 months, with more baked apple. The trends were less clear in the Chenin Blanc after 6 months, but oxygen led to significantly lower levels of the guava descriptors, with little difference observed between the treatments after 12 months. This work indicates that wine producers should strive to keep oxygen pickup to a minimum during bottling, but that such quality control procedures is probably to a large extent negated if the wines are exposed to too high storage temperatures during subsequent bottle ageing.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Wessel Du Toit 

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University,James Walls, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University Carien Coetzee, Basic wine

Contact the author

Keywords

oxidation, bottling, bottle ageing

Citation

Related articles…

The temperature‐based grapevine sugar ripeness (GSR) model for adapting a wide range of Vitis vinifera L. cultivars in a changing climate

 Temperatures are increasing due to climate change leading to advances in grapevine phenology and sugar accumulation in grape berries.

Considerations about the concept of “terroir”: definition and research direction

On exposera la distinction et la relation entre: “Etude des milieux”, “Zonage Petit ou Zonage Technique ou Sub Zonage”, “Grand Zonage”, “Délimitation des zones productives” ex.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

Emerging pest pressures in viticulture: a brief review of Argyrotaenia Ljungiana in Eastern Europe

As viticulture faces increasing threats from emerging pests, understanding and dealing with new infestations is crucial.

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).