Macrowine 2021
IVES 9 IVES Conference Series 9 Know thy enemy: oxygen or storage temperature?

Know thy enemy: oxygen or storage temperature?

Abstract

It is well known that high oxygen levels and high ageing temperatures are detrimental to white wine’s composition and ageing capacity. However, these results, though valuable, have often been obtained under extreme temperatures of oxygen levels that wine will normally not be exposed to (Cejudo-Bastante et al.,2013). Previous work performed have shown that multiple oxygen additions to wine can lead to the degradation of certain important compounds such as varietal thiols and SO2 (Coetzee et al., 2012). However, the interactive effects between oxygen additions normally experienced during bottling and temperatures that wine are exposed to during bottle ageing, have not received sufficient attention, especially in terms of sensorial development of the wine. The main aim of this work was thus to investigate the effects of different oxygen levels at bottling and subsequent bottle ageing temperatures on white wine’s chemical and sensorial development over time. Sauvignon Blanc and Chenin Blanc wines were both produced under relative reductive conditions and then bottled at 0.3, 3 and 6 mg/L total packaged oxygen and closed under screw cap. These wines were then stored at either 15 or 25 °C for 6 and 12 months and analysed for a wide array of compounds (antioxidants, colour, varietal thiols and major volatiles) as well as sensorially with descriptive analyses using a trained panel. Oxygen levels in the wine decreased more rapidly in the wines stored at 25 °C. However, the parameter tested that was influenced by the different oxygen additions to the largest extent was the SO2 levels, which decreased the most at the highest oxygen levels. Time was the largest contributor in terms of changes in the yellow/brown colour and glutathione levels. Varietal thiols levels were not affected by the oxygen levels, but higher temperatures led to more rapid acid hydrolyses of 3MHA in the case of the Chenin Blanc wines. Certain fruity esters also decreased quicker at the higher storage temperatures. Time and especially storage temperature had the largest effects on the sensory composition of the Sauvignon Blanc wines, with oxygen influencing it to almost no extent. Higher storage temperatures led to less fruity aromas such as grapefruit and passion fruit after 12 months, with more baked apple. The trends were less clear in the Chenin Blanc after 6 months, but oxygen led to significantly lower levels of the guava descriptors, with little difference observed between the treatments after 12 months. This work indicates that wine producers should strive to keep oxygen pickup to a minimum during bottling, but that such quality control procedures is probably to a large extent negated if the wines are exposed to too high storage temperatures during subsequent bottle ageing.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Wessel Du Toit 

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University,James Walls, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University Carien Coetzee, Basic wine

Contact the author

Keywords

oxidation, bottling, bottle ageing

Citation

Related articles…

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS

Subsurface irrigation: a means to reduce chemical and water inputs in vineyards

Grape growers around the world are seeking to reduce their reliance on herbicides. However, traditional alternatives to chemical weed control do not always integrate seamlessly into established vineyard operations. Employing nonchemical weed management often requires trellis alterations, purchasing or hiring new equipment, and depending on region, may significantly increase tractor passes required to reach desired level of weed control. Critical thinking and thoughtful strategies are necessary to minimize expenditures and maintain quality during the transition away from herbicides. In this trial, irrigation was installed underground in an effort to minimize water loss due to evaporation, better direct the water to the vines, and reduce weed growth in the difficult to control undervine area.

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes

The vineyard landscape of the oasis norte of Mendoza Argentina. Economic assessment of the recreational use through contingent valuation method

Oasis Norte’s vineyards of Mendoza Argentina have shaped along their existence, a characteristic landscape; this area is close to Mendoza City

Historical terraced vineyards – heritage and nature conservation strategies

Historical terrace vineyards are simultaneously impressive documents of the human inclination to design, sites for the production of high quality wines and habitats for a rich variety of flora and fauna