Macrowine 2021
IVES 9 IVES Conference Series 9 Know thy enemy: oxygen or storage temperature?

Know thy enemy: oxygen or storage temperature?

Abstract

It is well known that high oxygen levels and high ageing temperatures are detrimental to white wine’s composition and ageing capacity. However, these results, though valuable, have often been obtained under extreme temperatures of oxygen levels that wine will normally not be exposed to (Cejudo-Bastante et al.,2013). Previous work performed have shown that multiple oxygen additions to wine can lead to the degradation of certain important compounds such as varietal thiols and SO2 (Coetzee et al., 2012). However, the interactive effects between oxygen additions normally experienced during bottling and temperatures that wine are exposed to during bottle ageing, have not received sufficient attention, especially in terms of sensorial development of the wine. The main aim of this work was thus to investigate the effects of different oxygen levels at bottling and subsequent bottle ageing temperatures on white wine’s chemical and sensorial development over time. Sauvignon Blanc and Chenin Blanc wines were both produced under relative reductive conditions and then bottled at 0.3, 3 and 6 mg/L total packaged oxygen and closed under screw cap. These wines were then stored at either 15 or 25 °C for 6 and 12 months and analysed for a wide array of compounds (antioxidants, colour, varietal thiols and major volatiles) as well as sensorially with descriptive analyses using a trained panel. Oxygen levels in the wine decreased more rapidly in the wines stored at 25 °C. However, the parameter tested that was influenced by the different oxygen additions to the largest extent was the SO2 levels, which decreased the most at the highest oxygen levels. Time was the largest contributor in terms of changes in the yellow/brown colour and glutathione levels. Varietal thiols levels were not affected by the oxygen levels, but higher temperatures led to more rapid acid hydrolyses of 3MHA in the case of the Chenin Blanc wines. Certain fruity esters also decreased quicker at the higher storage temperatures. Time and especially storage temperature had the largest effects on the sensory composition of the Sauvignon Blanc wines, with oxygen influencing it to almost no extent. Higher storage temperatures led to less fruity aromas such as grapefruit and passion fruit after 12 months, with more baked apple. The trends were less clear in the Chenin Blanc after 6 months, but oxygen led to significantly lower levels of the guava descriptors, with little difference observed between the treatments after 12 months. This work indicates that wine producers should strive to keep oxygen pickup to a minimum during bottling, but that such quality control procedures is probably to a large extent negated if the wines are exposed to too high storage temperatures during subsequent bottle ageing.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Wessel Du Toit 

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University,James Walls, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University Carien Coetzee, Basic wine

Contact the author

Keywords

oxidation, bottling, bottle ageing

Citation

Related articles…

Novel ATR-FTIR and UV-Vis spectral markers for assessing the Prooxidant/Antioxidant Balance (PAB) in white wines

The browning index (BI), based on the absorbance at 420 nm, is a common oxidation marker in white wines, typically measured after thermal stress (50–60 °C for 5 up to 12 days) in air-saturated wines.

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Successful powdery mildew (PM) infection in plants relies on Mildew Resistance Locus O (MLO) genes, which encode susceptibility factors essential for fungal penetration. In Arabidopsis, loss-of-function mutations in three clade-V MLOs, AtMLO2, 6, and 12 confer complete resistance to PM infection. Since then, efforts are on to discover MLO genes contributing to PM susceptibility in many species to introduce mlo-based PM-resistance. Earlier studies in tomato and grapevine, using the RNAi approach, attributed PM susceptibility to SlMLO1, 5, and 8 and VvMLO3, 13, and 17, respectively indicating likely functional redundancy among MLOs.

Winery by-products as potential bioresources for green valorization and sustainable biotechnological applications

The wine and distillery industries are among the most prominent sectors in EU agriculture, where 75% of grape production is dedicated to winemaking.

Analysis of the oenological potentials of different oak forests in Hungary

Like France, Hungary has many oak forests used for making barrels since many years. But if the differences between the woods of the North, the East and the South-West forests of France are well known, this is probably not the case of Hungarian forests. However taking into account the essential differences of climates and soils, differences must be significant and the general name “Hungarian oak” must not have any real meaning. We have studied precisely (determination of concentrations of volatile and non-volatile wood compounds, anatomical criteria, measurement of antioxidant capacity) of oaks collected from northeastern Hungary and others collected from the Danube valley in the northwest of the country.