Macrowine 2021
IVES 9 IVES Conference Series 9 Know thy enemy: oxygen or storage temperature?

Know thy enemy: oxygen or storage temperature?

Abstract

It is well known that high oxygen levels and high ageing temperatures are detrimental to white wine’s composition and ageing capacity. However, these results, though valuable, have often been obtained under extreme temperatures of oxygen levels that wine will normally not be exposed to (Cejudo-Bastante et al.,2013). Previous work performed have shown that multiple oxygen additions to wine can lead to the degradation of certain important compounds such as varietal thiols and SO2 (Coetzee et al., 2012). However, the interactive effects between oxygen additions normally experienced during bottling and temperatures that wine are exposed to during bottle ageing, have not received sufficient attention, especially in terms of sensorial development of the wine. The main aim of this work was thus to investigate the effects of different oxygen levels at bottling and subsequent bottle ageing temperatures on white wine’s chemical and sensorial development over time. Sauvignon Blanc and Chenin Blanc wines were both produced under relative reductive conditions and then bottled at 0.3, 3 and 6 mg/L total packaged oxygen and closed under screw cap. These wines were then stored at either 15 or 25 °C for 6 and 12 months and analysed for a wide array of compounds (antioxidants, colour, varietal thiols and major volatiles) as well as sensorially with descriptive analyses using a trained panel. Oxygen levels in the wine decreased more rapidly in the wines stored at 25 °C. However, the parameter tested that was influenced by the different oxygen additions to the largest extent was the SO2 levels, which decreased the most at the highest oxygen levels. Time was the largest contributor in terms of changes in the yellow/brown colour and glutathione levels. Varietal thiols levels were not affected by the oxygen levels, but higher temperatures led to more rapid acid hydrolyses of 3MHA in the case of the Chenin Blanc wines. Certain fruity esters also decreased quicker at the higher storage temperatures. Time and especially storage temperature had the largest effects on the sensory composition of the Sauvignon Blanc wines, with oxygen influencing it to almost no extent. Higher storage temperatures led to less fruity aromas such as grapefruit and passion fruit after 12 months, with more baked apple. The trends were less clear in the Chenin Blanc after 6 months, but oxygen led to significantly lower levels of the guava descriptors, with little difference observed between the treatments after 12 months. This work indicates that wine producers should strive to keep oxygen pickup to a minimum during bottling, but that such quality control procedures is probably to a large extent negated if the wines are exposed to too high storage temperatures during subsequent bottle ageing.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Wessel Du Toit 

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University,James Walls, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University Carien Coetzee, Basic wine

Contact the author

Keywords

oxidation, bottling, bottle ageing

Citation

Related articles…

Winemaking techniques and wine tasting methods at the end of the Middle Ages

Les pratiques de vinification et de dégustation du vin sont souvent perçues, à travers un discours marketing très puissant, sous l’angle d’une tradition millénaire qui perdure depuis le Moyen Âge. En Bourgogne, il est courant de rattacher les racines de ces pratiques à l’activité des institutions ecclésiastiques qui possédaient d

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Understanding the physiological responses of Sauvignon blanc vines to sequential extreme weather events: implications for vineyard management in a changing climate

Climate plays a predominant role in vines’ growth and productivity and several environmental variables are already known to pose challenges to grapevine production and the horticultural industry as a whole. In this context, a number of extreme weather events already occurring and expected to occur in the next decades even more frequently and with higher magnitude results from current climate change scenario. The aim of this study was to examine the physiological responses of roots, leaves, and berries of Vitis vinifera cv. Sauvignon blanc to consecutive and combined stressors simulated in a semi-controlled environment.

A new AI-based system for early and accurate vineyard yield forecasting

Vineyard yield forecasting is a key issue for vintage scheduling and optimization of winemaking operations. High errors in yield forecasting can be found in the wine industry, mainly due to the high spatial variability in vineyards, strong dependency on historical yield data, insufficient use of agroclimatic data and inadequate sampling methods

Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Trunk diseases and esca in particular, represent a major threat to the sustainability of the vineyards. The percentages of unproductive vines in a plot could vary from 4% to over 20 % depending on local conditions and vintages.