Macrowine 2021
IVES 9 IVES Conference Series 9 Mixed starters Schizosaccharomyces japonicus/Saccharomyces cerevisiae as a novel tool to improve the aging stability of Sangiovese wines

Mixed starters Schizosaccharomyces japonicus/Saccharomyces cerevisiae as a novel tool to improve the aging stability of Sangiovese wines

Abstract

AIM: In the present work Schizosaccharomyces japonicus and Saccharomyces cerevisiae were inoculated simultaneously or in sequence in mixed fermentation trials with the aim of testing their ability to improve the overall quality of red wine, in particular of Sangiovese wine.

METHODS: The impact of simultaneous and sequential inoculations on growth and fermentation kinetics and on the analytical and sensory profiles of the experimental wines was evaluated at the end of the alcoholic fermentation and 24 months after bottling with standard methods.

RESULTS: S. japonicus affected S. cerevisiae growth and fermentative capability only in the sequential fermentation. The experimental wines produced with S. japonicus and S.cerevisiae in simultaneous and sequential mixed fermentation reached concentrations of total polysaccharides respectively two- and three-fold greater than those obtained with pure cultures of S.cerevisiae. Moreover, the non-Saccharomyces yeast modulated the concentration of some of the most important wine volatile compounds. At the end of the alcoholic fermentation, ethyl acetate was significantly higher in the mixed fermentation wines in respect to the level acceptable for a young red wine. However, this metabolite underwent considerable hydrolysis during the two-years aging in bottle, with a marked decrease in its concentration. In agreement, mixed fermentation wines as compared to the control wines showed no significant differences for the ethyl acetate perception evaluated by sensory analysis carried out 24 months after bottling. Hydrolysis–esterification equilibrium in mixed fermentation wines caused an increase of acetate esters compounds responsible for fruity aroma. These ester compounds reached significantly higher concentrations in both mixed fermentation wines than in the control wine inoculated with S. cerevisiae. Moreover, all mixed fermentation wines were perceived as having lower mouthfeel sensation of astringency compared to those obtained with S. cerevisiae, possibly due to the higher polysaccharides content.

CONCLUSIONS

Based on the evidence that after 2 years of aging, mixed fermentation wines presented an increase in color stability and the concentration of fruity aroma and a decrease in astringency, the combined utilization of Sch. japonicus and S. cerevisiae might represent an innovation for the improvement of the aging stability of Sangiovese wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Paola Domizio

Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy),Lorenzo Portaro, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Francesco MAIOLI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina CANUTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Monica PICCHI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Livio Lencioni, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Ilaria Mannazzu, Department of Agriculture, University of Sassari, Viale Italia 39, 07100 Sassari (Italy)

Contact the author

Keywords

wine stability, wine aging, wine aroma, schizosaccharomyces japonicus, mixed fermentation

Citation

Related articles…

Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Grapes infected with grey mould due Botrytis cinerea are widespread in vineyards during certain growing conditions.

Amphora Wines: To Pitch Or Not To Pitch

Amphora wines are known in Portugal as Vinhos de Talha. In this technology, alcoholic fermentation takes place in clay vessels that traditionally were pitched inside using pine pitch. Vinhos de Talha has a distinctive sensorial profile, due to the ancestral technique of vinification. However nowadays, some clay vessels are impermeabilized with other materials than pitch, such as bee wax and mainly epoxy resins.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

Exploring the factors affecting spatio‐temporal variation in grapevine powdery mildew

The spatial distribution of powdery mildew is often heterogeneous between neighboring plots, with higher disease pressure in certain places

Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

The use of elicitors to promote the biosynthesis of secondary metabolites in grapes has been tackled in several reports, however its study linked to nanotechnology is less developed.