Macrowine 2021
IVES 9 IVES Conference Series 9 Tracking of sulfonated flavanol formation in a model wine during storage

Tracking of sulfonated flavanol formation in a model wine during storage

Abstract

AIM: The aim of this work was to determine the reaction products of bisulfite with grape seed flavanols and changes therein over different storage conditions in a model wine in order to gain knowledge of the formation of these compounds which could be markers of aging in wines stored under inappropriate conditions [1].

METHODS: A model wine solution (10% ethanol, 5 g tartaric acid, pH=3.6) with 15 g of commercial grape seed extract (tannin concentration, 6 g/L) and 5 g of Na2S2O5 was subjected to different storage conditions (temperatures 20, 37 and 60 ºC, during 3 months). Monomeric and dimeric flavanols and their sulfonated derivatives were analysed by HPLC-ESI-QTOF-MS/MS.

RESULTS: The sulfonation reaction gave rise to several non-galloylated and galloylated flavanol sulfonates, mainly products of (epi)catechin which were found at higher concentrations in the grape seed extract. Storage time led to the formation of these compounds, even though it was observed greater sulfonated flavanol concentrations at higher temperatures, increasing reaction speed. At 60 ºC, dimeric flavanols were quickly degraded, being a further factor for the sulfonated monomeric product rise in the same way as (epi)catechin concentrations from condensed tannins. 

CONCLUSIONS

Temperature contributed to the sulfonation reaction in a model wine, favouring the formation of sulphonared flavan-3-ols derivatives and tannin depolymerization. Our findings based on the study of sulfonated flavanols could be useful for better understanding the chemical changes during wine ageing.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Authors

Sergio Gómez-Alonso

Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain.,Eduardo, GUISANTES-BATÁN, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain. Rocío, BRAVO DE GRACIA, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain. José, PÉREZ-NAVARRO, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain.

Contact the author

Keywords

SO2, phenolic compounds, temperature, grape seeds, ageing

Citation

Related articles…

Implication of secondary viral infections on grafting success rated in nurseries

Grapevine grafting is a complex process that since the establishment of phylloxera has become mandatory for grapevine. Grafting success in grapevine nurseries considerably varies among years and batches with most variety/rootstock combinations reach a high success rate (between 75% and 90%), but some combinations show lower success rates of around 40-50%. The causes of this variation are unknown, although biotic stresses like those caused by some viral infections have been demonstrated to affect the process. European certification schemes for the vegetative propagation of the vine include five major viruses (Arabis mosaic virus, Grapevine Fanleaf Virus, Grapevine Fleck Virus, and Grapevine-associated Leafroll Virus 1 and 3).

Characterized one of the largest collections of grapevine rootstocks (non-vinifera)

Microsatellite markers are a valuable tool to facilitate the management of germplasm collections and assess genetic diversity. This study reports the genetic characterization of a large collection of 379 rootstocks and other non-viniferaaccessions maintained at the University of Milan, Italy.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Vino e paesaggio: materiali per il governo del territorio vitivinicolo. Il piano regolatore delle città del vino

S’intende per Piano Regolatore delle Città del Vino la metodologia per redigere la parte strutturale dello strumento comunale di governo del territorio. Parliamo, infatti, del principale strumento comunale di governo del territorio, così come è venuto maturando nella riflessione delle Città del Vino, strumento che si misura con la sfida di governare tutto il territorio in modo coerente e sostenibile, a partire dal riconoscimento del valore del “sistema vigneto” e della sua intrinseca fragilità.

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).