Quantification of γ-nonalactone in botrytized and non-botrytized New Zealand and Australian wines

Abstract

ƴ-Nonalactonehas been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.1 The exact route ofƴ-nonalactone biosynthesis in wine has not been fully elucidated; however, precursors including linoleic acid, 13-hydroxyoctadeca-9,11-dienoic acid (13-HODE) and 9-hydroxyoctadeca-10,12-dienoic acid (9-HODE) have been identified in incubation experiments.2 Wines produced from grapes infected with “noble rot” caused by Botrytis cinerea fungus generally show higher concentrations ofƴ-nonalactone compared to non-botrytized white wines, but the relative contribution of potential formation pathways has not been elucidated.3

To assess the effect of linoleic acid on the production of g-nonalactone in wine, fermentations with and without added linoleic acid were carried out in synthetic grape must (SGM) at 28 °C using commercial Saccharomyces cerevisiae EC1118. Prior toƴ-nonalactone quantitation in the finished wines and in a subset of six Australian and New Zealand commercial wines, several routes for the synthesis of a deuterated analogue ofƴ-nonalactone were attempted, before the deuterated d6-analogue ofƴ-nonalactone from its non-deuterated analogue was produced successfully. Subsequently, attempts were made to utilise the d6-ƴ-nonalactone analogue as an internal standard for the measurement of g-nonalactone using gas chromatography-mass spectrometry. However, the synthetic d6-ƴ-nonalactone analogue proved to be an inappropriate internal standard for this purpose, due to back-exchange of deuterium atoms in wine. 2-Octanol was instead utilised as a surrogate internal standard for the measurement ofƴ-nonalactone.ƴ-Nonalactone was successfully identified (above the limit of detection, 4.12 g L-1) in two commercial New Zealand botrytized wine samples, and one fermentation sample to which linoleic acid (132 mgL-1) had been added. This suggests a possible link between the effect of Botrytis cinerea and/or linoleic acid, and increased levels ofƴ-nonalactone in wine. Further research is needed in this area to determine the mechanism ofƴ-nonalactone biosynthesis and to more accurately quantifyƴ-nonalactone in wine, using a more effective internal standard.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Gillean Miller

School of Chemical Sciences, University of Auckland,Lisa PILKINGTON, School of Chemical Sciences, University of Auckland Bruno FEDRIZZI, School of Chemical Sciences, University of Auckland David BARKER, School of Chemical Sciences, University of Auckland Rebecca DEED, School of Chemical Sciences and School of Biological Sciences, University of Auckland

Contact the author

Keywords

 botrytized wines, botrytis cinerea, gc-ms, lactones

Citation

Related articles…

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Malbec wines from Argentina: influence of climate on aromatic components and Organoleptic profile. Is it possible to stablish regional identities?

Malbec grapes have been cultivated for 150 years in Argentina. In the last 20 years Argentinian Malbec wines have emerged as a commercial boom worldwide.

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

Phenolic composition and physicochemical analysis of wines made with the syrah grape under double pruning in the Brazilian high-altitude cerrado

Wine growing has proven to be a development opportunity for agribusiness in several new regions of brazil, including the federal district. There are more than ten existing wineries, established in the last five years. Through the double pruning system, which consists of trimming the growing shoots in the summer and positioning the ripening of the fruits in a cooler period of the season, the grapes are sought to ripen more completely. The syrah variety has shown excellent adaptation to this cycle management model.

Viticultural parameters and enological performance of six Merlot clones in two contrasting vintages

Vitis vinifera L. and other Vitis have high genetic variations for cultivars or varieties. Many countries carried out strong efforts creating new clones of varieties, mainly focusing on plants free of viruses and other grapevine diseases, but also on different agronomical and enological characteristics of the plants. The aim of this study was to evaluate six clones of Merlot in the traditional viticulture of southeastern Brazil, focusing on distinct characteristics of yield, enological potential of grapes and wine typicality, in order to improve wine quality.