Quantification of γ-nonalactone in botrytized and non-botrytized New Zealand and Australian wines

Abstract

ƴ-Nonalactonehas been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.1 The exact route ofƴ-nonalactone biosynthesis in wine has not been fully elucidated; however, precursors including linoleic acid, 13-hydroxyoctadeca-9,11-dienoic acid (13-HODE) and 9-hydroxyoctadeca-10,12-dienoic acid (9-HODE) have been identified in incubation experiments.2 Wines produced from grapes infected with “noble rot” caused by Botrytis cinerea fungus generally show higher concentrations ofƴ-nonalactone compared to non-botrytized white wines, but the relative contribution of potential formation pathways has not been elucidated.3

To assess the effect of linoleic acid on the production of g-nonalactone in wine, fermentations with and without added linoleic acid were carried out in synthetic grape must (SGM) at 28 °C using commercial Saccharomyces cerevisiae EC1118. Prior toƴ-nonalactone quantitation in the finished wines and in a subset of six Australian and New Zealand commercial wines, several routes for the synthesis of a deuterated analogue ofƴ-nonalactone were attempted, before the deuterated d6-analogue ofƴ-nonalactone from its non-deuterated analogue was produced successfully. Subsequently, attempts were made to utilise the d6-ƴ-nonalactone analogue as an internal standard for the measurement of g-nonalactone using gas chromatography-mass spectrometry. However, the synthetic d6-ƴ-nonalactone analogue proved to be an inappropriate internal standard for this purpose, due to back-exchange of deuterium atoms in wine. 2-Octanol was instead utilised as a surrogate internal standard for the measurement ofƴ-nonalactone.ƴ-Nonalactone was successfully identified (above the limit of detection, 4.12 g L-1) in two commercial New Zealand botrytized wine samples, and one fermentation sample to which linoleic acid (132 mgL-1) had been added. This suggests a possible link between the effect of Botrytis cinerea and/or linoleic acid, and increased levels ofƴ-nonalactone in wine. Further research is needed in this area to determine the mechanism ofƴ-nonalactone biosynthesis and to more accurately quantifyƴ-nonalactone in wine, using a more effective internal standard.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Gillean Miller

School of Chemical Sciences, University of Auckland,Lisa PILKINGTON, School of Chemical Sciences, University of Auckland Bruno FEDRIZZI, School of Chemical Sciences, University of Auckland David BARKER, School of Chemical Sciences, University of Auckland Rebecca DEED, School of Chemical Sciences and School of Biological Sciences, University of Auckland

Contact the author

Keywords

 botrytized wines, botrytis cinerea, gc-ms, lactones

Citation

Related articles…

Skin And Seed Extracts Differently Behave Towards Salivary Proteins

Background: Polyphenols extracted from skins and seeds showed different sensory attributes including astringency and bitterness. In previous studies, it has been demonstrated that extracts obtained either from skins or seeds interact differently with salivary proteins.

Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

The work was aimed at comparing some analytical methods used to characterize oenological tannins and the measure of oxygen consumption rate (OCR), in order to provide oenologists with a rapid method to test the antioxidant capacity of tannin based products and a tool to choose the best suited product for each purpose.

Cold plasma at atmospheric pressure for eliminating Brettanomyces from oak wood

In the oenological industry, the maintenance and sanitation of oak barrels has become a fundamental task. The wood has a porous structure that facilitates the penetration not only of the wine, but of the microorganisms it contains, such as the alterative yeast Brettanomyces bruxellensis.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

La sémantique liée à la notion de terroir : une objectivité pluridisciplinaire

It is not easy at first sight to give an exhaustive definition of the notion of terroir as it can be simplified or complicated at will. Thus the vagueness that surrounds this concept leaves the door open to various interpretations of the terroir. These tend towards a questionable level of objectivity because the fields they explore are not sufficient to explain the notion on their own, constituting only part of a whole.