Quantification of γ-nonalactone in botrytized and non-botrytized New Zealand and Australian wines

Abstract

ƴ-Nonalactonehas been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.1 The exact route ofƴ-nonalactone biosynthesis in wine has not been fully elucidated; however, precursors including linoleic acid, 13-hydroxyoctadeca-9,11-dienoic acid (13-HODE) and 9-hydroxyoctadeca-10,12-dienoic acid (9-HODE) have been identified in incubation experiments.2 Wines produced from grapes infected with “noble rot” caused by Botrytis cinerea fungus generally show higher concentrations ofƴ-nonalactone compared to non-botrytized white wines, but the relative contribution of potential formation pathways has not been elucidated.3

To assess the effect of linoleic acid on the production of g-nonalactone in wine, fermentations with and without added linoleic acid were carried out in synthetic grape must (SGM) at 28 °C using commercial Saccharomyces cerevisiae EC1118. Prior toƴ-nonalactone quantitation in the finished wines and in a subset of six Australian and New Zealand commercial wines, several routes for the synthesis of a deuterated analogue ofƴ-nonalactone were attempted, before the deuterated d6-analogue ofƴ-nonalactone from its non-deuterated analogue was produced successfully. Subsequently, attempts were made to utilise the d6-ƴ-nonalactone analogue as an internal standard for the measurement of g-nonalactone using gas chromatography-mass spectrometry. However, the synthetic d6-ƴ-nonalactone analogue proved to be an inappropriate internal standard for this purpose, due to back-exchange of deuterium atoms in wine. 2-Octanol was instead utilised as a surrogate internal standard for the measurement ofƴ-nonalactone.ƴ-Nonalactone was successfully identified (above the limit of detection, 4.12 g L-1) in two commercial New Zealand botrytized wine samples, and one fermentation sample to which linoleic acid (132 mgL-1) had been added. This suggests a possible link between the effect of Botrytis cinerea and/or linoleic acid, and increased levels ofƴ-nonalactone in wine. Further research is needed in this area to determine the mechanism ofƴ-nonalactone biosynthesis and to more accurately quantifyƴ-nonalactone in wine, using a more effective internal standard.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Gillean Miller

School of Chemical Sciences, University of Auckland,Lisa PILKINGTON, School of Chemical Sciences, University of Auckland Bruno FEDRIZZI, School of Chemical Sciences, University of Auckland David BARKER, School of Chemical Sciences, University of Auckland Rebecca DEED, School of Chemical Sciences and School of Biological Sciences, University of Auckland

Contact the author

Keywords

 botrytized wines, botrytis cinerea, gc-ms, lactones

Citation

Related articles…

Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Climate change presents a significant challenge to grape growing worldwide as increased temperatures lead to wines with increased sugar and pH levels. Manipulation of the exposed leaf area is a powerful lever governing the assimilation and storage of non-structural carbohydrates in grapevines. Reducing the leaf-to-fruit ratio is now considered as a tool for adapting to hotter and dryer grape growing conditions.

Historical terraced vineyards – heritage and nature conservation strategies

Historical terrace vineyards are simultaneously impressive documents of the human inclination to design, sites for the production of high quality wines and habitats for a rich variety of flora and fauna

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.

Influence of pedoclimatic factors during berry ripening in Burgundy

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy.

Characterization of “territoires” throughout the production of wines obtained with withered grapes: the cases of “Terra della Valpolicella” (Verona) and “Terra della Valle del Piave” (Treviso) in Northern Italy

Dans la définition et la description d’un “territoire” (“terra” en italien), avec les facteurs du milieu et génétiques, un rôle important est joué par ceux agronomiques, techniques et de culture qui contribuent à caractériser le produit d’une zone spécifique.