Macrowine 2021
IVES 9 IVES Conference Series 9 Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

Abstract

AIM: The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality

METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

RESULTS: The SHS−GC−IMS method was able to detect 23 compounds among 65 peaks, mostly esters and higher alcohols, using the current instrumentation. Several identified compounds, including methyl acetate, ethyl formate, and amyl acetate, have seldomly been reported in Sauvignon Blanc wines before. The method also indicated decent repeatability and reproducibility, both of which were below 10%. The quality prediction model was successfully established using artificial neural network (ANN) based on all peaks regardless of their identity. The model returned a highly satisfactory prediction accuracy of 95.4% using 10-fold cross-validation. SHapley Additive exPlanations (SHAP) values was used to delineate the prediction mechanism of the model. SHAP values revealed that isoamyl acetate, ethyl decanoate, ethyl octanoate and 1-hexanol were positively linked to better quality, whereas hexyl acetate, isoamyl alcohol, and 1-butanol could lower the quality grading.

CONCLUSIONS:

This study has successfully developed a method alternative to GC−MS based instruments for the non-targeted screening of wine volatile compounds. With its simple design featuring a headspace sampling unit, highly simplified sample preparation, and nitrogen being the only gas supply, the instrument has shown outstanding practicality desired by commercial winery laboratories. The powerful prediction model and the insights extracted by SHAP values could serve as a starting point for winemakers to investigate the effects of winemaking operations on the expression of the volatiles shown to correlate with higher gradings, to enhance the quality of wines. The findings of this study have been published as an original research article in the Journal of Agricultural and Food Chemistry: J. Agric. Food Chem. 2021, 69(10), 3255−3265.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Wenyao Zhu , Frank BENKWITZ, Paul A. KILMARTIN,

School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; Drylands Winery, Constellation Brands NZ, Blenheim 7273, New Zealand.

Contact the author

Keywords

Sauvignon blanc, static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS), quality grading, machine learning, artificial neural network (ANN), model explanation

Citation

Related articles…

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site.

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Grassland and patch scale diversity in supporting avian diversity and potential ecosystem services

The composition and structure of vineyard landscapes significantly affect bird communities and the ecosystem services they provide in agriculture.