Macrowine 2021
IVES 9 IVES Conference Series 9 Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

Abstract

AIM: The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality

METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

RESULTS: The SHS−GC−IMS method was able to detect 23 compounds among 65 peaks, mostly esters and higher alcohols, using the current instrumentation. Several identified compounds, including methyl acetate, ethyl formate, and amyl acetate, have seldomly been reported in Sauvignon Blanc wines before. The method also indicated decent repeatability and reproducibility, both of which were below 10%. The quality prediction model was successfully established using artificial neural network (ANN) based on all peaks regardless of their identity. The model returned a highly satisfactory prediction accuracy of 95.4% using 10-fold cross-validation. SHapley Additive exPlanations (SHAP) values was used to delineate the prediction mechanism of the model. SHAP values revealed that isoamyl acetate, ethyl decanoate, ethyl octanoate and 1-hexanol were positively linked to better quality, whereas hexyl acetate, isoamyl alcohol, and 1-butanol could lower the quality grading.

CONCLUSIONS:

This study has successfully developed a method alternative to GC−MS based instruments for the non-targeted screening of wine volatile compounds. With its simple design featuring a headspace sampling unit, highly simplified sample preparation, and nitrogen being the only gas supply, the instrument has shown outstanding practicality desired by commercial winery laboratories. The powerful prediction model and the insights extracted by SHAP values could serve as a starting point for winemakers to investigate the effects of winemaking operations on the expression of the volatiles shown to correlate with higher gradings, to enhance the quality of wines. The findings of this study have been published as an original research article in the Journal of Agricultural and Food Chemistry: J. Agric. Food Chem. 2021, 69(10), 3255−3265.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Wenyao Zhu , Frank BENKWITZ, Paul A. KILMARTIN,

School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; Drylands Winery, Constellation Brands NZ, Blenheim 7273, New Zealand.

Contact the author

Keywords

Sauvignon blanc, static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS), quality grading, machine learning, artificial neural network (ANN), model explanation

Citation

Related articles…

Feasibility of pre-fermentative oenological tannins addition to enhance volatile composition and aroma perception in white wines

Oenological tannins (OETs) are an alternative to sulphur dioxide due to their antioxidant and antioxidase properties in the early phase of winemaking [1,2].

Zonificación climática de las D.O. Rueda y Toro y vinos de la tierra de medina del campo

La producción vitícola es el resultado de una serie de factores influyentes (variedad, patron) dentro de un medio ecológico­-climatico-edafico, en el que se interactua por medio de técnicas de cultivo adecuadas.

Ripening behaviour and grape must quality of eleven white resistant varieties in Trentino

In a situation of uncertainty towards the overall effect of climate change and the reduction of pestice utilization on quality, the wine sector needs to maintain the profitability of producers, which inexorably depends on ensuring the quality of grapes and wines. Among the various alternatives that can be adopted, hybrid varieties carrying resistance genes are currently gaining the attention of researchers and producers. Some of them are already a reality and are included in the national catalogue of some countries, selected by research institutes all over Europe.

New tools for a visual analysis of vineyard landscapes?

A vineyard landscape is above all an area observed by someone, that is to say a physical entity perceved and represented by this person.

Differential responses of red and white grape cultivars trained to a single trellis system – the VSP

Commercial grape production relies on training grapevine cultivars onto a variety of trellis systems. Training allows for well-lit leaves and clusters, maximizing fruit quality in addition to facilitating cultivation, harvesting, and diseases control. Although grapevines can be trained onto an infinite variety of trellis systems, most red and white cultivars are trained to the standard VSP (Vertical Shoot Positioning) system. However, red and white cultivars respond differently to VSP in fruit composition and growth characteristics, which are yet to be fully understood. Therefore, the objective of this study was to examine the influence of the VSP trellis system on fruit composition of three red, Cabernet Sauvignon, Merlot and Syrah, and three white, Chardonnay, Riesling, and Gewurztraminer cultivars grown under uniform growing conditions in the same vineyard. All cultivars were monitored for maturity and harvested at their physiologically maximum possible sugar concentration to compare various fruit quality attributes such as Brix, pH, TA, malic and tartaric acids, glucose and fructose, potassium, YAN, and phenolic compounds including total anthocyanins, anthocyanin profile, and tannins. A distinct pattern in fruit composition was observed in each cultivar. In regards to growth characteristics, Syrah grew vigorously with the highest cluster weight. Although all cultivars developed pyriform seeds, the seed size and weight varied among all cultivars. Also varied were mesocarp cell viability, brush morphology, and cane structure. This knowledge of the canopy architectural characteristics assessed by the widely employed fruit compositional attributes and growth characteristics will aid the growers in better management of the vines in varied situations.