Macrowine 2021
IVES 9 IVES Conference Series 9 Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

Abstract

AIM: The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality

METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

RESULTS: The SHS−GC−IMS method was able to detect 23 compounds among 65 peaks, mostly esters and higher alcohols, using the current instrumentation. Several identified compounds, including methyl acetate, ethyl formate, and amyl acetate, have seldomly been reported in Sauvignon Blanc wines before. The method also indicated decent repeatability and reproducibility, both of which were below 10%. The quality prediction model was successfully established using artificial neural network (ANN) based on all peaks regardless of their identity. The model returned a highly satisfactory prediction accuracy of 95.4% using 10-fold cross-validation. SHapley Additive exPlanations (SHAP) values was used to delineate the prediction mechanism of the model. SHAP values revealed that isoamyl acetate, ethyl decanoate, ethyl octanoate and 1-hexanol were positively linked to better quality, whereas hexyl acetate, isoamyl alcohol, and 1-butanol could lower the quality grading.

CONCLUSIONS:

This study has successfully developed a method alternative to GC−MS based instruments for the non-targeted screening of wine volatile compounds. With its simple design featuring a headspace sampling unit, highly simplified sample preparation, and nitrogen being the only gas supply, the instrument has shown outstanding practicality desired by commercial winery laboratories. The powerful prediction model and the insights extracted by SHAP values could serve as a starting point for winemakers to investigate the effects of winemaking operations on the expression of the volatiles shown to correlate with higher gradings, to enhance the quality of wines. The findings of this study have been published as an original research article in the Journal of Agricultural and Food Chemistry: J. Agric. Food Chem. 2021, 69(10), 3255−3265.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Wenyao Zhu , Frank BENKWITZ, Paul A. KILMARTIN,

School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; Drylands Winery, Constellation Brands NZ, Blenheim 7273, New Zealand.

Contact the author

Keywords

Sauvignon blanc, static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS), quality grading, machine learning, artificial neural network (ANN), model explanation

Citation

Related articles…

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation.

El viñedo en Lanzarote y el Archipiélago Canario

La isla de Lanzarote, primera en ser ocupada en los albores del siglo XV, es la única del archipiélago, junto con Fuerteventura, que no produjo vino. Ocasionalmente hubo algún parral para el consumo

The use of rootstock as a lever in the face of climate change and dieback of vineyard

As viticulture faces challenges such as climate change or vineyard dieback, the choice of the variety and rootstock becomes more and more crucial. To study rootstock levers in the Bordeaux region, a parcel of Cabernet Sauvignon (CS) was planted with four rootstocks in 2014. Twenty repetitions of each of the following four rootstocks were set up: 101-14 MGt, Nemadex AB, 420A MGt and Gravesac. The number of bunches, yields and pruning weights of the vine shoots were measured individually on 240 vines from 2017 to 2021. Since 2020, nitrogen status assessed by assimilable nitrogen level, hydric status assessed by δ13C and berry maturity were measured on 80 samples taken from 20 repetitions of the four rootstocks. A lower yield was measured for CS grafted onto Nemadex AB due to the lower number of bunches and the lower weight of berries. The differences between the other three rootstocks are small, but CS grafted onto 420A MGt was the most productive. The CS grafted onto Nemadex AB had the lowest pruning weight while 101-14 MGt had the highest. In 2020, δ13C showed a more moderate water stress with 101-14 MGt and 420A MGt than with Nemadex AB. Surprisingly, the Gravesac was under more stress than the 101-14 MGt. The nitrogen status in the berries was better for Nemadex AB but this was perhaps due to the significantly lower weight of the berries.Rootstock 101-14 MGt attained the highest accumulation of sugars in the berries while 420A MGt allows to preserve higher acidity. The parcel is still young which may explain some of the results. These measures must therefore be continued over the next several years to fully assess the effects of these rootstocks on the development of the vines and the quality of the production under new climatic conditions.

Genomics and phenomics of root system architecture in grapevine

Adapting viticulture to climate change is crucial, as it presents significant challenges for future grape production.

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.