Macrowine 2021
IVES 9 IVES Conference Series 9 Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

Abstract

AIM: The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality

METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

RESULTS: The SHS−GC−IMS method was able to detect 23 compounds among 65 peaks, mostly esters and higher alcohols, using the current instrumentation. Several identified compounds, including methyl acetate, ethyl formate, and amyl acetate, have seldomly been reported in Sauvignon Blanc wines before. The method also indicated decent repeatability and reproducibility, both of which were below 10%. The quality prediction model was successfully established using artificial neural network (ANN) based on all peaks regardless of their identity. The model returned a highly satisfactory prediction accuracy of 95.4% using 10-fold cross-validation. SHapley Additive exPlanations (SHAP) values was used to delineate the prediction mechanism of the model. SHAP values revealed that isoamyl acetate, ethyl decanoate, ethyl octanoate and 1-hexanol were positively linked to better quality, whereas hexyl acetate, isoamyl alcohol, and 1-butanol could lower the quality grading.

CONCLUSIONS:

This study has successfully developed a method alternative to GC−MS based instruments for the non-targeted screening of wine volatile compounds. With its simple design featuring a headspace sampling unit, highly simplified sample preparation, and nitrogen being the only gas supply, the instrument has shown outstanding practicality desired by commercial winery laboratories. The powerful prediction model and the insights extracted by SHAP values could serve as a starting point for winemakers to investigate the effects of winemaking operations on the expression of the volatiles shown to correlate with higher gradings, to enhance the quality of wines. The findings of this study have been published as an original research article in the Journal of Agricultural and Food Chemistry: J. Agric. Food Chem. 2021, 69(10), 3255−3265.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Wenyao Zhu , Frank BENKWITZ, Paul A. KILMARTIN,

School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; Drylands Winery, Constellation Brands NZ, Blenheim 7273, New Zealand.

Contact the author

Keywords

Sauvignon blanc, static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS), quality grading, machine learning, artificial neural network (ANN), model explanation

Citation

Related articles…

Novel protocols for variable rate vineyard management

The advent of precision viticulture (PV) has allowed to address problems related to spatial and temporal variability at the within-field scale. Nowadays, several remote and proximal sensing solutions allow description of the existing variability at different temporal and ground resolution through extremely robust soil, vigor, yield, and grape quality maps. In parallel, numerous studies have described grapevine performances within the homogeneous zones and identified soil as main driver of variability. There is a broad consensus that different vigor zones within the same plot may show differential canopy growth, yield and fruit composition, depicting diverse enological potentials and cultural needs.

The social construction of wine-growing areas: the “Graves de Bordeaux”

«Graves de Bordeaux» est une des rares appellations à porter le nom d’un terroir, au sens agronomique du terme. Et ce territoire vitivinicole présente une relative unité géographique, de Langon à Bordeaux sur la rive gauche de la Garonne.

Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability

SO2 reaction with electrophilic species present in wine, including in particular carbonyl compounds, is responsible for the reduction of its protective effect during wine aging. In the present study, direct 1H NMR profiling was used to monitor the reactivity of SO2 with acetaldehyde under wine-like oxidation conditions.

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61.

Sensory impact of acetaldehyde addition in Syrah red wines

Acetaldehyde is a volatile carbonyl compound synthetized by yeast during alcoholic fermentation, but it can also be formed by oxidation of ethanol during wine aging [1]. At low concentration, it enhances the fruity aroma, however, at higher levels, it can generate the appearance of notes of bruised and rotten apple [2]. From a chemical point of view, acetaldehyde is a reactive low-