WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Pure wine vs natural wine

Pure wine vs natural wine

Abstract

English version below

Vins purs VS vins natures.

S’il n’existe pas de réglementation officielle, la démarche des vins naturels prône un retour aux pratiques dites ancestrales préconisant notamment un mode d’élaboration des vins utilisant le moins d’intrants possible. Le seul autorisé reste l’anhydride sulfureux (SO2) à des doses quatre à cinq fois moins importantes que pour les vins dits conventionnels. Ce désir de renouer avec des pratiques anciennes et plus respectueuses des sols, du végétal et du produit vin trouverait-il un fondement historique ? 
Les textes et les ouvrages, notamment ceux des XVIIe et XVIIIe siècles, mentionnent des vins « bon, pur, loyal et marchand ». Qu’entend-on alors par un vin pur ? Pourrait-on trouver dans cette définition les prémices des vins naturels ? 
La littérature domestique et gastronomique étant très fournie sur cette période, la consultation d’auteurs tels que Nicolas de Bonnefons, Besnier, Angran de Rueneuve, Louis Liger d’Auxerre, Lemery et bien d’autres lève le voile sur les pratiques viticoles et vineuses d’une époque où cette notion de vin pur revient assez fréquemment. Élaboration, vinifications, élevage, conservation des vins, traitements, ces pratiques de l’époque moderne annoncent-elles la philosophie adoptée par les vins naturels d’aujourd’hui ?

Although there is no formal regulation, the natural wine approach calls for a return to ancestral practices, which include a wine making process using as few inputs as possible.
The only one authorized is sulphur dioxide (SO2) at doses four to five times lower than for conventional wine. 
Would this desire to reconnect with old practices , more respectful of soils, plants and wine has a historical basis?
Books, especially those of the 17th and 18th centuries, mention wines which must be “good, pure, loyal and merchant”. But what is the meaning of a pure wine at that time? Could this be considered as the firstfruit of natural wine?
As domestic and gastronomic literature is very abundant during this period, consulting authors such as Nicolas de Bonnefons, Besnier, Angran de Rueneuve, Louis Liger d’Auxerre, Lemery and many others could shed light on winemaking practices of a time when notion of pure wine comes up quite frequently. Wine making process, vinification, ageing, conservation of wines, treatments, do these practices announce the philosophy adopted by the today natural wine?

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Charlotte Fromont

Presenting author

Charlotte Fromont – CHVV & Chaire UNESCO Culture & tradition du vin

CHVV & Chaire UNESCO Culture & tradition du vin 

Contact the author

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Le aree viticole storiche nel mondo: i loro vitigni, la loro protezione e la tipicità dei vini in esse ottenuti

Il tema da trattare si riferisce ai vari ecosistemi viticoli mondiali, ovviamente non facilmente sintetizzabili in una relazione. Sostanzialmente si richiama

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients.

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

Strategies for sample preparation and data handling in GC-MS wine applications

It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling.