Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of oenological tannins on wine aroma before and after oxidation: a real-time study by coupling sensory (TDS) and chemical (PTR-ToF-MS) analyses

Effect of oenological tannins on wine aroma before and after oxidation: a real-time study by coupling sensory (TDS) and chemical (PTR-ToF-MS) analyses

Abstract

AIM: Polyphenols are important compounds involved in many chemical and sensory wine features. In winemaking, adding oenological tannins claims to have positive impacts on wine stability, protection from oxidation and aroma persistence. Polyphenols are antioxidant compounds by either scavenging reactive oxygen and nitrogen species or chelating Fe2+ ions (1). However, as tannins oxidation leads to the formation of highly reactive species (i.e. ortho-quinones), it is still unclear if they have an effective role toward oxidation of wine aromas (2). In this work, we aim at studying the effect of two commercial tannins (proanthocyanidins, ellagitannins) on red wine flavour (mainly aroma) before and after air exposition.

METHOD: We coupled a dynamic sensory evaluation technique with a dynamic instrumental nosespace analysis, in order to decipher the impact of oenological tannins on in-vivo aroma release and perception. 17 trained subjects evaluated the temporal dominance of sensations (TDS) of 6 non-oaked Pinot Noir in duplicate, while their nasal cavity was connected to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS). Samples followed a Tannin by Oxidation factorial design including the base wine (BW), BW spiked with ellagitannins (BWE) or with proanthocyanidins (BWP), and the three wines after air exposition (OW, OWE, OWP). Each of these 6 samples was evaluated in 3 consecutive sips and this evaluation was duplicated.

RESULTS: TDS sensory results show that red wine oxidation decreases the fruity aroma dominance and increases the dominance of maderised and prune notes (3). The chemical analysis by PTR-MS revealed that the fruity decrease was correlated to the decrease of the fruity ethyl decanoate and the increase of Strecker aldehydes isobutyraldehyde and isovaleraldehyde. The addition of ellagitannins preserves the perception of fruity notes without the appearance of maderised ones after air exposition. This effect was not observed with proanthocyanidins: the TDS curves of OWP was similar to those recorded for OW, both showing dominant maderised and prune aromas, masking the fruity notes. Moreover, the monitoring of in vivo aroma release by PTR-ToF-MS suggests that ellagitannins increase aroma persistence in the non-oxidized wine.

CONCLUSIONS:

Results evidence that the presence of ellagitannins can have a positive impact on the aroma persistence of young red wine and on the preservation of its fruity aroma perception after oxidation. Being red wine oak-barrel ageing a storage in presence of ellagitannins and oxygen, these results could be helpful in managing the sensory shelf-life of fruity red wines with the preservation of these aromas. Indeed, these aromas are able to mask the appearance of oxidative notes, while balancing the sensory contribution of volatiles extracted from wood.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Elisabetta Pittari, Isabelle, ANDRIOT (2,3) Luigi, MOIO (1) Jean-Luc, LE QUÉRÉ (2) Pascal, SCHLICH (2,3) Paola, PIOMBINO (1) Francis, CANON (2)

(1) Dept. of Agricultural Science, University of Naples Federico II, Italy (2) Université Bourgogne Franche-Comté, France (3) research infrastructure, ChemoSens facility, Dijon, France, CSGA, AgroSup Dijon, CNRS, INRAE, INRAE, PROBE

Contact the author

Keywords

PTR-ToF-MS – temporal dominance of sensations; proanthocyanidins; ellagitannins; red wine oxidation; oenological tannins

Citation

Related articles…

Multiple description and validation of autochthone grape varieties in the Carpathian Basin

Context and Purpose of the Study. In many countries, the preservation of grape varieties with heritage value is ensured by genebanks of outstanding significance, which allow for the study of these varieties and the assessment of their future roles in response to environmental, market, and social challenges.

Non-invasive grapevine inflorescence detection using YOLOv11 under field conditions

Accurate and early yield estimation in vineyards is essential for the effective management of resources and informed decision-making in viticulture.

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Activation of retrotransposition in grapevine

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci.

Plant fibers in comparison with other fining agents for the re-duction of pesticide residues and the effect on the volitile profile of Austrian white and red wines.

Pesticide residues in Austrian wines have so far been poorly documented. In 250 wines, 33 grape musts and 45 musts in fermentation, no limit values were exceeded, but in some cases high lev-els (>0.100 mg/l) of single residues were found, meaning that a reduction of these levels before bottling could make sense. In the course of this study, a white and a red wine were spiked with a mix of 23 pesticide residues from the group of fungicides (including botryticides), herbicides and insecticides. The influence of the following treatments on residue concentrations and volatile profiles were investigated: two activated charcoal products, a bentonite clay, two commer-cial mixed fining agents made of bentonite and charcoal, two yeast cell wall products, and a plant fiber-based novel filter additive. The results of this study show that all the agents tested reduced both residues and aromavolatile compounds in wine, with activated charcoal having the strongest effect and bentonite the weakest. The mixed agents and yeast wall products showed less aroma losses than charcoal products, but also lower residue reduction. Plant fibers showed good reduction of pesticides with moderate aroma damage, but these results need to be con-firmed under practical conditions.