Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of oenological tannins on wine aroma before and after oxidation: a real-time study by coupling sensory (TDS) and chemical (PTR-ToF-MS) analyses

Effect of oenological tannins on wine aroma before and after oxidation: a real-time study by coupling sensory (TDS) and chemical (PTR-ToF-MS) analyses

Abstract

AIM: Polyphenols are important compounds involved in many chemical and sensory wine features. In winemaking, adding oenological tannins claims to have positive impacts on wine stability, protection from oxidation and aroma persistence. Polyphenols are antioxidant compounds by either scavenging reactive oxygen and nitrogen species or chelating Fe2+ ions (1). However, as tannins oxidation leads to the formation of highly reactive species (i.e. ortho-quinones), it is still unclear if they have an effective role toward oxidation of wine aromas (2). In this work, we aim at studying the effect of two commercial tannins (proanthocyanidins, ellagitannins) on red wine flavour (mainly aroma) before and after air exposition.

METHOD: We coupled a dynamic sensory evaluation technique with a dynamic instrumental nosespace analysis, in order to decipher the impact of oenological tannins on in-vivo aroma release and perception. 17 trained subjects evaluated the temporal dominance of sensations (TDS) of 6 non-oaked Pinot Noir in duplicate, while their nasal cavity was connected to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS). Samples followed a Tannin by Oxidation factorial design including the base wine (BW), BW spiked with ellagitannins (BWE) or with proanthocyanidins (BWP), and the three wines after air exposition (OW, OWE, OWP). Each of these 6 samples was evaluated in 3 consecutive sips and this evaluation was duplicated.

RESULTS: TDS sensory results show that red wine oxidation decreases the fruity aroma dominance and increases the dominance of maderised and prune notes (3). The chemical analysis by PTR-MS revealed that the fruity decrease was correlated to the decrease of the fruity ethyl decanoate and the increase of Strecker aldehydes isobutyraldehyde and isovaleraldehyde. The addition of ellagitannins preserves the perception of fruity notes without the appearance of maderised ones after air exposition. This effect was not observed with proanthocyanidins: the TDS curves of OWP was similar to those recorded for OW, both showing dominant maderised and prune aromas, masking the fruity notes. Moreover, the monitoring of in vivo aroma release by PTR-ToF-MS suggests that ellagitannins increase aroma persistence in the non-oxidized wine.

CONCLUSIONS:

Results evidence that the presence of ellagitannins can have a positive impact on the aroma persistence of young red wine and on the preservation of its fruity aroma perception after oxidation. Being red wine oak-barrel ageing a storage in presence of ellagitannins and oxygen, these results could be helpful in managing the sensory shelf-life of fruity red wines with the preservation of these aromas. Indeed, these aromas are able to mask the appearance of oxidative notes, while balancing the sensory contribution of volatiles extracted from wood.

DOI:

Publication date: September 22, 2021

Issue: Macrowine 2021

Type: Article

Authors

Elisabetta Pittari, Isabelle, ANDRIOT (2,3) Luigi, MOIO (1) Jean-Luc, LE QUÉRÉ (2) Pascal, SCHLICH (2,3) Paola, PIOMBINO (1) Francis, CANON (2)

(1) Dept. of Agricultural Science, University of Naples Federico II, Italy (2) Université Bourgogne Franche-Comté, France (3) research infrastructure, ChemoSens facility, Dijon, France, CSGA, AgroSup Dijon, CNRS, INRAE, INRAE, PROBE

Contact the author

Keywords

PTR-ToF-MS – temporal dominance of sensations; proanthocyanidins; ellagitannins; red wine oxidation; oenological tannins

Citation

Related articles…

Organic volatile compounds as suitable markers of grapevine response to defense elicitors in the vineyard

In greenhouse, emission of volatile organic compounds (VOC) by grapevine leaves has already been reported in response to the defence elicitor sulfated laminarin (PS3) [1]. In order to check that this response was not specific to PS3, experiments were conducted on Vitis cv Marselan plantlets with several other elicitors of different chemical structures: i.e. Bastid® (COS-OGA),

VitExpress, an open interactive transcriptomic platform for grapevine

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Changes in wine secondary metabolites composition by the timing of inoculation with lactic acid bacteria: impact on wine aroma

For the first time, it was established that the timing of inoculation with LAB could significantly impact the concentration of many secondary metabolites leading to significant aromatic changes. From studied compounds, the most influenced were esters and diacetyl.

Use of ultrasounds to accelerate aging on lees of red wines

Aging on lees (AOL) is a powerful technique to protect varietal aroma and color. Simultaneously, helps to soften tannins and increase and improve wine body and structure. AOL is complementary to barrel aging modulating the wood impact and protecting wine from oxidative conditions.

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.