Macrowine 2021
IVES 9 IVES Conference Series 9 Oenological potential of indigenous greek grape varieties and their clones

Oenological potential of indigenous greek grape varieties and their clones

Abstract

AIM: Vine clone selection aims at the survival of clones with particularly desireable attributes for the production of high quality wines. The purpose of this research was to study the enological potential of the clones of Greek indigenous grape varieties over two vintages, 2018 and 2019.

METHODS: Two clones of the white grape varieties Moschofilero (E26 and E27), Assyrtiko (E11 and 16), Roditis (25E16 and 02E1E21) and two clones of the red grape varieties Xinomavro (19 and E2E30) and Agiorgitiko (03E40 and 41E47) were vinified under the same protocol for the white wines and common for the red wines in 2018 and 2019. The resulting products were studied for several enological parameters such as alcohol content, volatile acidity, pH, total phenolics, anthocyanins and tannins for the red wines, as well as browning tests for the white wines. The aroma profile of these ten samples was investigated through sensory analysis with intensity rating of individual attributes on a five-point scale by a trained panel.

RESULTS: Some common patterns of the clones’ characteristics were observed across the two vintages. In particular, wines of Assyrtiko 16 and of Roditis 02E1E21 had a lower tendency to oxidation. Agiorgitiko 03E40 was found higher in tannins compared to clone 41E47 in both years and the wine of Xinomavro 19 was richer in anthocyanins and phenolic content than clone E2E30 in both vintages, as well. Moschofilero E27 appeared more prone to oxidation than E26 in 2018, while the contrary was observed in 2019. Regarding their aroma profiles in 2018, Roditis 02E1E21 and Assyrtiko E11 were characterized by higher citrus fruit aroma intensity and Moschofilero E27 scored higher in rose aroma compared to their counterparts. Agiorgitiko 03E40 was characterized by higher cherry and blackberry intensity, while Xinomavro E2E30 was richer in olive aroma compared to their counterparts. These differences in aroma tend to appear in the wines of vintage 2019 as well, although they are not statistically significant in that vintage.

CONCLUSIONS:

This work was a first attempt to study the characteristics of two clones for each of the five main Greek grape varieties over two consecutive vintages and it denoted some significant differences in the final product of the clones. Repetition of the same study protocol in the coming vintages and careful investigation of the abovementioned quality parameters may lead to the appropriate clone evaluation and consequently to consistent products with specific varietal attributes.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Evangelia Nanou, Sofia, NIKOLAOU,  Panagiotis, TSAGGARATOS, Konstantinos, BAKASIETAS, Sofoklis, PETROPOULOS,  Alexandros, KANAPITSAS,  Yorgos, KOTSERIDIS

Laboratory of Enology & Alcoholic Drinks (LEAD), Agricultural University of Athens, Greece, Hellenifera & VNB Bakasietas Vine Nursery, Nemea Greece, Hellenifera & VNB Bakasietas Vine Nursery, Nemea Greece 

Contact the author

Keywords

vine clone; clone selection; standard wine analysis, sensory analysis; aroma profile; greek wines

Citation

Related articles…

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Simulating the impact of climate change on viticultural systems in various European vineyards

Aim: Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007, 2015; van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010).

The invasive seaweed Rugulopteryx okamurae: an innovative plant protective extract

Grapevine downy mildew, caused by Plasmopara viticola, is a devastating disease worldwide. Most commercially important cultivars of the European grapevine are highly susceptible and therefore require the recurrent application of synthetic fungicides to control the disease, copper being the most frequently used. However, with European Union goals to lower their usage, there is a need to develop innovative and sustainable strategies. In this respect, seaweeds have proven to have great potential as phytosanitary agents, in addition to promoting plant growth and stress-tolerance.

Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Effects of climate change on viticulture systems and winemaking processes are being felt across the world. The IPCC 6thAssessment Report concluded widespread and rapid changes have occurred, the scale of recent changes being unprecedented over many centuries to many thousands of years. These changes will continue under all emission scenarios considered, including increases in frequency and intensity of hot extremes, heatwaves, heavy precipitation and droughts. Wine companies need tools and models allowing to peer into the future and identify the moment for intervention and measures for mitigation and/or avoidance. Previously, we presented conceptual guidelines for a 5-stage framework for defining adaptation strategies for wine businesses. That framework allows for direct comparison of different solutions to mitigate perceived climate change risks. Recent global climatic evolution and multiple reports of severe events since then (smoke taint, heatwave and droughts, frost, hail and floods, rising sea levels) imply urgency in providing effective tools to tackle the multiple perceived risks. A coordinated drive towards a higher level of resilience is therefore required. Recent publications such as the Australian Wine Future Climate Atlas and results from projects such as H2020 MED-GOLD inform on expected climate change impacts to the wine sector, foreseeing the climate to expect at regional and vineyard scale in coming decades. We present examples of practical application of the Climate Change Adaptation Framework (CCAF) to impacts affecting wine production in two wine regions: Barossa (Australia) and Douro (Portugal). We demonstrate feasibility of the framework for climate adaptation from available data and tools to estimate historical climate-induced profitability loss, to project it in the future and to identify critical moments when disruptions may occur if timely measures are not implemented. Finally, we discuss adaptation measures and respective timeframes for successful mitigation of disruptive risk while enhancing resilience of wine systems.

Climatic influences on Mencía grapevine phenology and grape composition for Amandi (Ribeira Sacra, Spain)

During the year 2009 we have studied the phenology and grape composition of Mencía cultivar in seven different situations (orientation and altitude) for Amandi subzone