Macrowine 2021
IVES 9 IVES Conference Series 9 Oenological potential of indigenous greek grape varieties and their clones

Oenological potential of indigenous greek grape varieties and their clones

Abstract

AIM: Vine clone selection aims at the survival of clones with particularly desireable attributes for the production of high quality wines. The purpose of this research was to study the enological potential of the clones of Greek indigenous grape varieties over two vintages, 2018 and 2019.

METHODS: Two clones of the white grape varieties Moschofilero (E26 and E27), Assyrtiko (E11 and 16), Roditis (25E16 and 02E1E21) and two clones of the red grape varieties Xinomavro (19 and E2E30) and Agiorgitiko (03E40 and 41E47) were vinified under the same protocol for the white wines and common for the red wines in 2018 and 2019. The resulting products were studied for several enological parameters such as alcohol content, volatile acidity, pH, total phenolics, anthocyanins and tannins for the red wines, as well as browning tests for the white wines. The aroma profile of these ten samples was investigated through sensory analysis with intensity rating of individual attributes on a five-point scale by a trained panel.

RESULTS: Some common patterns of the clones’ characteristics were observed across the two vintages. In particular, wines of Assyrtiko 16 and of Roditis 02E1E21 had a lower tendency to oxidation. Agiorgitiko 03E40 was found higher in tannins compared to clone 41E47 in both years and the wine of Xinomavro 19 was richer in anthocyanins and phenolic content than clone E2E30 in both vintages, as well. Moschofilero E27 appeared more prone to oxidation than E26 in 2018, while the contrary was observed in 2019. Regarding their aroma profiles in 2018, Roditis 02E1E21 and Assyrtiko E11 were characterized by higher citrus fruit aroma intensity and Moschofilero E27 scored higher in rose aroma compared to their counterparts. Agiorgitiko 03E40 was characterized by higher cherry and blackberry intensity, while Xinomavro E2E30 was richer in olive aroma compared to their counterparts. These differences in aroma tend to appear in the wines of vintage 2019 as well, although they are not statistically significant in that vintage.

CONCLUSIONS:

This work was a first attempt to study the characteristics of two clones for each of the five main Greek grape varieties over two consecutive vintages and it denoted some significant differences in the final product of the clones. Repetition of the same study protocol in the coming vintages and careful investigation of the abovementioned quality parameters may lead to the appropriate clone evaluation and consequently to consistent products with specific varietal attributes.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Evangelia Nanou, Sofia, NIKOLAOU,  Panagiotis, TSAGGARATOS, Konstantinos, BAKASIETAS, Sofoklis, PETROPOULOS,  Alexandros, KANAPITSAS,  Yorgos, KOTSERIDIS

Laboratory of Enology & Alcoholic Drinks (LEAD), Agricultural University of Athens, Greece, Hellenifera & VNB Bakasietas Vine Nursery, Nemea Greece, Hellenifera & VNB Bakasietas Vine Nursery, Nemea Greece 

Contact the author

Keywords

vine clone; clone selection; standard wine analysis, sensory analysis; aroma profile; greek wines

Citation

Related articles…

Evaluating alternatives to cold stabilization in wineries: the use of carboximethyl cellulose, potassium polyaspartate, electrodialysis and ion exchange resins – the results after one year in the bottle

The tartaric stabilization of wines before bottling to avoid the precipitation of tartaric acid salts is an important and common step during wine production. The presence of precipitated salt crystals in bottle wines is detrimental for their quality and even a legal issue in some countries. Cold stabilization is the most common stabilization treatment. Although it has been shown to be effective, it has some significant disadvantages, mainly regarding losses of color and aromas and its high cost. Therefore, other products and methodologies are being introduced in the wineries for the replacement of this process. Some of these new techniques involve the reduction of the ions causing the insolubilization of tartaric acid while other are based in the formation of protective colloids or the inhibition of the crystallization of salts. In this study, white, rosé and red wines have been treated with carboxymethylcellulose, potassium polyaspartate and an ion exchange resin. The tartaric stability of the wines, together with the oenological, chromatic and sensory characteristics were studied after the wines had been stored during one year in the bottle. The results indicate that the use of carboxymethyl cellulose and potassium polyaspartate maintained the best the sensory and chromatic characteristics and the wine stability of the wines in comparison with an untreated control wine.

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

The future of pesticide regulation in the EU – between precaution and proportionality

The article analyzes current developments in European pesticide regulation.

Influence of precipitation on the phenolic and isotopic composition of Vitis Vinifera red wines

This study investigates how precipitation from November to February during each harvest year, influence the phenolic and isotopic profiles of red wines, particularly focusing on trans-resveratrol, total phenolic compounds, and carbon and oxygen isotopes (¹³C/¹²C and ¹⁸O/¹⁶O).

Ceramic imprint in wine: influence of hydraulic ratio on ceramic dissolution and wine pH in amphorae systems

This interaction is primarily due to an acidic attack on the ceramic by the wine. It results in (1) the dissolution of the ceramic into the wine and the release of a wide variety of elements; and (2) an increase of the wine pH. The extent of these effects depends on the mineralogical and chemical composition of the ceramic, as well as the hydraulic ratio of the ceramic-wine system (the term hydraulic ratio (ρ) defines here the volume of wine over the surface area of the ceramic in contact with the wine).