Macrowine 2021
IVES 9 IVES Conference Series 9 Sensory profile: a tool to characterize originality of wines produced without sulfites

Sensory profile: a tool to characterize originality of wines produced without sulfites

Abstract

AIM: A trend to reduce chemical inputs in wines exists, especially sulfur dioxide (SO2). This additive is widely used due to its antioxidant, antiseptic and antioxidasic properties. During without sulfites vinification, bioprotection by adding yeast on harvest could be a sulfites alternative. With extension of this wine market, sensory impact linked to sulfites absence and/or sulfites alternative should be evaluated. That’s what this approach proposes to do, focusing on sensory characteristics of wines produced with or without SO2 addition during the winemaking process.

METHODS: Wines were elaborated from Merlot grapes of two maturity levels according to three modalities: SO2, without SO2 and bioprotection on harvest (mix of Torulaspora delbrueckii and Metschnikowia pulcherrima). SO2 modality was sulfited throughout the winemaking and aging processes whether other modalities received any addition. After two years of aging, sensory studies were carried out with a specific panel for one month. First, descriptors were generated to differentiate the wines, then panelists were trained on these specific descriptors for five sessions and finally wines sensory profiles were elaborated.

RESULTS: The panel generated thirteen descriptors to differentiate the wines on which they have been trained: nine olfactive, three gustative and one trigeminal. After training, the nine presenting a consensus between judges were finally used. Wines without SO2 were characterized by freshness (mint and coolness) and cooked black cherries; bioprotection by fresh blackcurrant and with SO2 by smoke. Hierarchical clustering applied to this sensory approach lead to significantly differentiate wines produced with or without SO2.

CONCLUSIONS:

This approach allow to highlight sensory specificities of without sulfites wines. Therefore, with a dozen of descriptors, tasters could differentiate wines which have been sulfited or not but cannot differentiate among not sulfited ones those who have received bioprotection from those which have got any addition, regardless grapes maturity level.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Edouard Pelonnier-Magimel , Sara WINDHOLTZ Isabelle, MASNEUF-POMAREDE,  Jean-Christophe BARBE  

Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE F33882  France,
all : Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE F33882 Villenave d’Ornon France

Contact the author

Keywords

wines without sulfites, bioprotection, sensory analysis, sensory profile, panel training

Citation

Related articles…

Application of the simplified quality bioclimatical index of Fregoni: suggestion of using its evolution curve

Les indices bioclimatiques constituent un bon outil pour piloter le développement vitivinicole dans une région précise

The “resources profile®”: a relevant decision and support system for adapting viticultural practices to soils agronomic properties and limiting their environmental impacts

Soil is a three-dimensional complex system, which constitutes a major component of Terroir. Soil characteristics strongly influence vine development, grape oenological potentialities and thus wine quality and style.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process.