Macrowine 2021
IVES 9 IVES Conference Series 9 The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

Abstract

Volatile sulphur compounds are a group of impact odorants with low odour thresholds that can contribute both positively and negatively to wine aroma. The varietal thiols, 3MH and 3MHA, are known to contribute positive tropical aromas to white wines and are most abundant in Sauvignon Blanc wines. The group of compounds contributing negative aromas are known as reductive sulphur compounds (RSCs) as they add a reductive aroma of asparagus, cooked vegetables and rotten egg to wines. All these compounds play a part in and are a result of the sulphur pathway in the yeast cell during fermentation and therefore attempting to increase the concentration of the varietal thiols may directly influence the concentration of the RSCs. The varietal thiols and the low molecular weight RSCs are highly volatile and therefore their sensory perception can change rapidly over time.

AIM: The aim of this study was to investigate the sensory interaction between varietal thiols and fermentative RSCs in wine for the first time.

METHODS: The varietal thiols 3MH and 3MHA; and ethanethiol (EtSH), a RSC, were spiked in a model wine solution and evaluated sensorially using temporal rate-all-that-apply (TRATA). TRATA is a novel method for temporal sensory evaluation of products. It allows for the free concurrent quantification of the intensity of multiple attributes by the sensory panellists. The panel consisted of staff and students of Stellenbosch University that were familiar with the sensory evaluation of varietal thiols in wine. The levels used for 3MH (500 and 2500 ng/L) and 3MHA (100 and 400 ng/L) in this study were based on low and high concentrations as found in commercial South African Sauvignon Blanc wines. The EtSH levels were based on the odour threshold (1 µg/L) and a level at which wines are considered faulty (2.5 µg/L).

RESULTS: The study showed that the positive aromas associated with 3MH and 3MHA can be suppressed by EtSH in certain situation and three-way interactions were found for specific attributes. The negative aromas associated with EtSH show no significant interactions with varietal thiols although 3MH alone can exhibit a reductive aroma. Time plays a significant role in the perception of these sulphur compounds and certain interactions only occur 60-120s after the start of the sensory evaluation.

CONCLUSIONS:

Reductive sulphur compounds can significantly suppress the aromas of the varietal thiols 3MH and 3MHA.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sebastian Vannevel, Jeanne BRAND,  Astrid BUICA, Wessel DU TOIT,

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa 

Contact the author

Keywords

varietal thiols, reductive sulphur compounds, trata (temporal rate-all-that-apply), aroma interaction study

Citation

Related articles…

Characterisation of viticultural and oenological practices in two French AOC in the middle Loire Valley: comparison of different methods to extract information from a survey among winegrowers

The type of wine is determined by environmental, plant materials and human factors. These factors are numerous and interact together, which makes it difficult to determine the hierarchy of their effects

Exploring typicity in Nebbiolo wines across different areas through chemical analysis

“Nebbiolo” is a red winegrape variety well known to produce monovarietal wines in Piemonte, Valle d’Aosta, and Lombardia regions, taking part to 7 DOCG (Denominazione di Origine Controllata e Garantita) and 22 DOC (Denominazione di Origine Controllata) protected designations of origin (PDO) [1,2].

Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Consumers and the wine industry tend to agree on the ability of old vines to produce fruit that allows the production of wine of superior character. However, despite past and ongoing research, objective evidence of this point of view is still debated and studies on robust, specifically dedicated plots are scarce. Thus the impact of grapevine age on berry oenological potential and wine quality remains an open question. To try to objectively address the issue, a unique vineyard was established at Geisenheim University, Germany. It was planted in 1971 with cv. Riesling grafted on 5C Teleki. In 1995 and 2012, several rows were uprooted and replanted with the same rootstock/scion combination, resulting in a vineyard with alternate rows of identical plant material, but with different planting dates. The parameters of technical maturity and grape composition at harvest were analyzed during seasons 2014, 2015, 2016 and 2017 combining HPLC and enzymatic methods. Separate micro-vinifications were made for each age group and wine composition was analyzed by a combination of 1H-NMR and SPE-GC-MS.

Grapegrowing soils

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant

Plastic cover film on table grapes from field to cold storage

Plastic film covering is a technique largely used in viticulture to protect table grapes vines from adverse weather conditions and to reduce the negative effects of grapevine fungi disease. Plastic film composition affects solar radiation income inside the covering with effects on sunlight wavelengths in relation to different absorbance and reflectance. The interaction of selected light ranges with vines could influence grape ripening and yield and consequently influence shelf life.