Macrowine 2021
IVES 9 IVES Conference Series 9 The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

Abstract

Volatile sulphur compounds are a group of impact odorants with low odour thresholds that can contribute both positively and negatively to wine aroma. The varietal thiols, 3MH and 3MHA, are known to contribute positive tropical aromas to white wines and are most abundant in Sauvignon Blanc wines. The group of compounds contributing negative aromas are known as reductive sulphur compounds (RSCs) as they add a reductive aroma of asparagus, cooked vegetables and rotten egg to wines. All these compounds play a part in and are a result of the sulphur pathway in the yeast cell during fermentation and therefore attempting to increase the concentration of the varietal thiols may directly influence the concentration of the RSCs. The varietal thiols and the low molecular weight RSCs are highly volatile and therefore their sensory perception can change rapidly over time.

AIM: The aim of this study was to investigate the sensory interaction between varietal thiols and fermentative RSCs in wine for the first time.

METHODS: The varietal thiols 3MH and 3MHA; and ethanethiol (EtSH), a RSC, were spiked in a model wine solution and evaluated sensorially using temporal rate-all-that-apply (TRATA). TRATA is a novel method for temporal sensory evaluation of products. It allows for the free concurrent quantification of the intensity of multiple attributes by the sensory panellists. The panel consisted of staff and students of Stellenbosch University that were familiar with the sensory evaluation of varietal thiols in wine. The levels used for 3MH (500 and 2500 ng/L) and 3MHA (100 and 400 ng/L) in this study were based on low and high concentrations as found in commercial South African Sauvignon Blanc wines. The EtSH levels were based on the odour threshold (1 µg/L) and a level at which wines are considered faulty (2.5 µg/L).

RESULTS: The study showed that the positive aromas associated with 3MH and 3MHA can be suppressed by EtSH in certain situation and three-way interactions were found for specific attributes. The negative aromas associated with EtSH show no significant interactions with varietal thiols although 3MH alone can exhibit a reductive aroma. Time plays a significant role in the perception of these sulphur compounds and certain interactions only occur 60-120s after the start of the sensory evaluation.

CONCLUSIONS:

Reductive sulphur compounds can significantly suppress the aromas of the varietal thiols 3MH and 3MHA.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sebastian Vannevel, Jeanne BRAND,  Astrid BUICA, Wessel DU TOIT,

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa 

Contact the author

Keywords

varietal thiols, reductive sulphur compounds, trata (temporal rate-all-that-apply), aroma interaction study

Citation

Related articles…

Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Climate has a predominant role on growth and development of grapevines. Therefore, climate change represents an important challenge to the winemaking sector.

The sensory profile of astringency: application on Sangiovese wines

One of the main sensory characteristics of red wine is astringency, which can be defined as drying, puckering and roughing of the oral cavity after the exposure to tannin-rich wines. Tannins are the main responsible for the intensity of the sensation as well for the qualitative aspects of astringency. However, the total intensity of the sensation is not sufficient to fully characterize red wine astringency. Thirty-three different subqualities (Gawel et al. 2001) had been generated to describe the complexity of this multi perceptual phenomenon, which includes both tastes, tactile, and flavor sensations. So, how to feel tannins during tasting? In this study, we used a sensory method that combine the training for astringency subqualities with touch-standards and the CATA questions, usually applied in consumer science, to evaluate the astringency subqualities of different typologies of Sangiovese: commercial and experimental wines. Sangiovese wine represents a good model for the study of astringency because it is generally characterized by a high content of low and high molecular weight proantocyanidins. Commercial wines differed for percentage of Sangiovese (80-100 %) grapes used in winemaking and for designation (Toscana TS, Chianti Classico CH, Chianti Riserva CR, Morellino di Scansano MS). The astringency profile of wines changed as the percentage of Sangiovese increased. Positive subqualities as velvet, soft, mouthcoat, and rich highly characterized the Sangiovese wine belonging to TS and CR designations. Moreover, the astringency subqualities related to blending or wood aging, represented the drivers of quality of commercial Sangiovese wines.

Cluster trait prediction using hyperspectral signatures in a population of 221 Riesling clones

Cluster architecture in grapevine plays a critical role in influencing bunch microclimate, thus quality traits, including sugar content, phenolic composition, and disease susceptibility.

Can minimal pruning be a strategy to adapt grape ripening to global warming?

Berry maturation in warm areas takes place very early, when temperatures are still high and favorable for carbohydrate synthesis and accumulation in the berries, but not as favorable for maintaining high titratable acidity or low pH, or for increasing berry polyphenol content. Different canopy management techniques have been proven to delay berry maturation at the expense of yield (severe canopy trimming, late spring pruning to induce sprouting of dormant buds, etc.). Minimal pruning delays berry ripening by highly increasing yield and by reducing the leaf area to fruit ratio.

Effects of organic mulches on the soil environment and yield of grapevine

Farming management practices aiming at conserving soil moisture have been developed in arid and semiarid-areas facing water scarcity problems. Organic mulching is an effective method to manipulate the crop-growing microclimate increasing crop yield by controlling soil temperature, and retaining soil moisture by reducing soil evaporation. In this sense, the effectiveness of different organic mulching materials (straw mulch and grapevine pruning debris) applied within the row of a vineyard was evaluated on the soil and on the vine in a Tempranillo vineyard located in La Rioja (Spain). Organic mulches were compared with a traditional bare soil management technique (based on the use of herbicides to avoid weed incidence). Mulching coverages favourably influenced the soil water retention throughout all the grapevine vegetative cycle. However, the soil-moisture variation was not the same under different mulching materials, being the straw mulch (SM) the one that retained more water in comparison with grapevine pruning debris (GPD) based-cover. The changes of soil moisture in the upper surface layer (0–10 cm) were highly dynamic, probably due to water vapour fluxes across the soil-atmospheric interface. However, both, SM and GPD reduced these fluctuations as compared with bare soils. A similar trend occurred with soil temperature. Both organic mulches altered soil temperature in comparison with bare soil by reducing soil temperature in summer and raising it in winter. Moreover, the same buffering effect for the temperature on the covered soil also remains in the deeper layers. To conclude, we could see that organic mulching had a positive impact on soil-moisture storage and soil temperature and the extent of this effect depends on the type of mulching materials. These changes led to higher rates of photosynthesis and stomatal conductivity compared to bare soils, also favouring crop growth and grape yields.