Macrowine 2021
IVES 9 IVES Conference Series 9 The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

Abstract

Volatile sulphur compounds are a group of impact odorants with low odour thresholds that can contribute both positively and negatively to wine aroma. The varietal thiols, 3MH and 3MHA, are known to contribute positive tropical aromas to white wines and are most abundant in Sauvignon Blanc wines. The group of compounds contributing negative aromas are known as reductive sulphur compounds (RSCs) as they add a reductive aroma of asparagus, cooked vegetables and rotten egg to wines. All these compounds play a part in and are a result of the sulphur pathway in the yeast cell during fermentation and therefore attempting to increase the concentration of the varietal thiols may directly influence the concentration of the RSCs. The varietal thiols and the low molecular weight RSCs are highly volatile and therefore their sensory perception can change rapidly over time.

AIM: The aim of this study was to investigate the sensory interaction between varietal thiols and fermentative RSCs in wine for the first time.

METHODS: The varietal thiols 3MH and 3MHA; and ethanethiol (EtSH), a RSC, were spiked in a model wine solution and evaluated sensorially using temporal rate-all-that-apply (TRATA). TRATA is a novel method for temporal sensory evaluation of products. It allows for the free concurrent quantification of the intensity of multiple attributes by the sensory panellists. The panel consisted of staff and students of Stellenbosch University that were familiar with the sensory evaluation of varietal thiols in wine. The levels used for 3MH (500 and 2500 ng/L) and 3MHA (100 and 400 ng/L) in this study were based on low and high concentrations as found in commercial South African Sauvignon Blanc wines. The EtSH levels were based on the odour threshold (1 µg/L) and a level at which wines are considered faulty (2.5 µg/L).

RESULTS: The study showed that the positive aromas associated with 3MH and 3MHA can be suppressed by EtSH in certain situation and three-way interactions were found for specific attributes. The negative aromas associated with EtSH show no significant interactions with varietal thiols although 3MH alone can exhibit a reductive aroma. Time plays a significant role in the perception of these sulphur compounds and certain interactions only occur 60-120s after the start of the sensory evaluation.

CONCLUSIONS:

Reductive sulphur compounds can significantly suppress the aromas of the varietal thiols 3MH and 3MHA.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sebastian Vannevel, Jeanne BRAND,  Astrid BUICA, Wessel DU TOIT,

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa 

Contact the author

Keywords

varietal thiols, reductive sulphur compounds, trata (temporal rate-all-that-apply), aroma interaction study

Citation

Related articles…

The adaptation and resilience of scions and rootstocks to water constraint

The ability of grapevine cultivars and rootstocks to cope with and adapt to recurring water constraints is the focus of this study. The contribution of intrinsic (epigenetic) and extrinsic (rootzone microbial community) factors to water stress resilience will be discussed. The study was conducted in a validated model vineyard where three scion cultivars (Pinotage, Shiraz, and Cabernet Sauvignon) on two rootstocks (Richter 110 and USVIT8-7) grow under recurring seasonal water constraint (and control) scenarios since planting (in 2020). Comprehensive profiling of the site, soil, atmospheric conditions, plants, and their physiological responses provide contextual data for the analyses conducted.

Post-plant nematicides: too little, too late for Northern root-knot nematode management

Context and Purpose. Management of plant-parasitic nematodes in perennial cropping systems such as wines grapes is challenging.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

Training system and its influence on iso-anisohydric behavior of cv. Syrah

Water use efficiency is one of the most valued objectives in vine growing in mediterranean climates (de la fuente et al., 2015). Due to this, the grape growers provide different adaptation strategies according to their efficient consumption against the presumable water deficit generated under these environmental conditions. The use of non-positioned shoot systems (like sprawl, bush, etc.) Can help to achieve this objective.

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and