Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of the sensory profile of doc douro red wines through sensory traditional single-point techniques and temporal dominance methods

Evaluation of the sensory profile of doc douro red wines through sensory traditional single-point techniques and temporal dominance methods

Abstract

No other agricultural product has a stronger relationship with the soil than wine. This study aimed to characterize the sensory profile of red wines from the Douro Demarcated Region (RDD) certified as DOC Douro, through the application of Quantitative Descriptive Analysis (QDA®) and Temporal Dominance of Sensations (TDS) sensory methods. QDA® provides a complete word description for all a product’s sensory properties. The TDS, which is relatively recent in the sensory field [1], allows to evaluation and description of the evolution of the dominant sensory perceptions during the tasting of a food product.Eighteen commercial wines from different producers were evaluated, six different samples representing each of the three sub-regions of the RDD. The panel had eighteen tasters, divided into trained and specialists. The statistical treatment was done using tools such as CATPCA and SEM for ADQ®, MANOVA, and ANOVA for TDS.The results showed that, in both methods, the wines from the three sub-regions have profiles with very corresponding characteristics in visual, olfactory, and taste aspects. The results also pointed to a more expressive relationship to the characteristics of the sub-regions and Touriga Franca, Touriga Nacional, and Tinta Roriz varieties than to the oenological practices. The olfactory profile was characterized by aromatic Fruity, Floral, and Balsamic notes, on the other hand, the taste was highlighted by Astringency and Acidity and again Fruity as the main mouth-aroma. In the second-order factorial analysis of SEM, carried out on ADQ®, the taste attributes showed greater weight in all models [2], reinforcing the results of the CATPCA [3], where the analyzes pointed out the taste attributes as those with the greatest contribution to the characterization of the sensory profile of wines. The integrated use of CATPCA and SEM techniques proved to be robust. As for TDS, the expert tasters were at ease in carrying out the evaluations, both concerning the suggested evaluation protocol, as well as the interface of the data acquisition software. Moreover, the use of MANOVA followed by ANOVA revealed statistically significant differences for the highest rate of maximum dominance. The Factor Analysis indicated homogeneity of the panels, presenting high factor weights. For trained tasters, the factor explains 89.716% of the total variance, for experts, 92.163%. The value of individual commonality is high, revealing that the component is adequate to describe the latent factorial structure among the tasters.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alice Vilela, Eduardo, AMORIM, Elisete, CORREIA

Chemistry Research Center (CQ-VR), Dept. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal*-Enology, and Viticulture Master Student, Dept. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.- Center for Computational and Stochastic Mathematics (CEMAT), Dep. of Mathematics, IST-UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.

Contact the author

Keywords

sensory profile, qda, tds, wine, doc douro

Citation

Related articles…

Barrel-to-Barrel Variation of Color and Phenolic Composition in Barrel-Aged Red Wine

Tangible variation of sensory characteristics is often perceived in wine aged in similar barrels. This variation is mostly explained by differences in the wood chemical composition, and in the production of the barrels. Despite these facts, the literature concerning barrel-to-barrel variation and its effect on wine sensory and chemical characteristics is very scarce [1]. In this study, the barrel-to-barrel variation in barrel-aged wines was examined in respect of the most important phenolic compounds of oenological interest and chromatic characteristics, considering both the effects of the (individual) barrel and cooperage. A red wine was aged in 49 new medium-toasted oak (Quercus petraea) barrels, from four cooperages, for 12 months

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

Rationalizing The Wine Nucleophilic Competition For Quinone Addition

loss and color browning which lead to wine unacceptance by consumers. These changes are mainly driven by the consumption of oxygen by polyphenols leading to the production of quinones which are oxidant compounds. Quinones can react with numerous nucleophilic compounds notably aromatic thiols, decreasing the aromatic bouquet of the wine.

Double success of combining technical management with low pesticide inputs in the vineyard to obtain PDO wines in France

Viticulture is a major contributor to the antagonism of positive reputation and negative environmental impacts of agriculture. Vine contributes to structure landscape in the world, resulting, for example, in the delimitation of protected designations of origin (PDO). PDO vine is currently subject to the double challenge of sustainability and climate change adaptation. As vine is very sensitive to diseases and pests, vine requires a high use of pesticides to achieve its quality and yield goals. This high need for pesticides is the most important negative impact of environmental components.

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.