Macrowine 2021
IVES 9 IVES Conference Series 9 An overview of wine sensory characterization: from classical descriptive analysis to the emergence of novel profiling techniques

An overview of wine sensory characterization: from classical descriptive analysis to the emergence of novel profiling techniques

Abstract

The wine industry requires coexistence between tradition and innovation to meet consumers’ preferences. Sensory science allows the objective quantification of consumers’ understanding of a product and subjective feedback of consumer’s perception through acceptance or rejection of stimulus or even describing emotions evoked [1]. To measure sensations, emotions and liking, and their dynamics over time, time-intensity methods are crucial tools with growing interest in sensory science [2].

AIM: This research aimed to give a big picture of the latest investigation about sensory methods and their variations, and the successful application of sensory devices and immersive contexts in wine evaluation.

METHODS: An overview of all the recent findings in sensory science methodologies, including sensory descriptive tests (quantitative descriptive analysis (ADQ), flash profiling, projective mapping and napping, check-all-that-apply (CATA), open-ended questions, preferred attribute elicitation method, polarised sensory positioning, free –choice profiling, sorting) [3], sensory discriminative tests (triangle test, tetrad test, duo-trio test, paired comparison, intensity scales, forced-choice tests) [4], sensory hedonic tests (hedonic methods, consumers’ preference, and emotions), time-intensity methods (dual-attribute time-intensity, multiple-attribute time-intensity, temporal dominance of sensations), instrumental sensory devices and immersive techniques (e-nose, e-tongue, virtual reality, gaming) and sensory data treatment are reviewed.

RESULTS: This study is the first attempt to characterize sensory methods and techniques, from classical descriptive analysis to the emergence of novel profiling techniques, comparing the different approaches and predicting some future research on this topic.

CONCLUSIONS:

The characterization of sensory methods and techniques have been investigated in the literature. However, there is a limited articulation between descriptive, discriminative, hedonic tests and time-intensity methods as well as instrumental sensory devices and immersive techniques. Furthermore, statistical techniques in sensory science play a crucial role and increasingly allow a more precise sensory data analysis and more adapted to a complex product such as wine.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Catarina Marques, Alfredo,  Alto Douro, Elisete, CORREIA, Alice, VILELA,

CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
CORREIA, Center for Computational and Stochastic Mathematics (CEMAT), Dep. of Mathematics, IST-UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
VILELA, Chemistry Research Centre (CQ-VR), Dep. of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal;

Contact the author

Keywords

sensory analysis; instrumental sensory devices; immersive techniques; statistical techniques; wine

Citation

Related articles…

Viticultural sites and their valorisation in Istria (Croatia)

Pratiquement tout le territoire d’Istrie possède les bonnes conditions naturelles pour la viticulture, laquelle dans ce lieu a une tradition millénaire. La viticulture était et reste toujours la plus importante branche de production agraire et d’économie. Les sites viticoles en Istrie sont caractérisés par des diverses conditions naturelles.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.

An Ag+ SPE method combined with Deans’ switch heart-cutting MDGC–MS/Olfactometry approach for identifying unknown volatile thiols in wine

Wine aroma is a crucial quality criterion. A multitude of volatile compounds have been identified and correlated to the aroma attributes perceived in wine.

Mechanisms involved in the heating of the environment by the aerodynamic action of a wind machine to protect a vineyard against spring frost

One of the main consequences of global warming is the rise of the mean temperature. Thus, the heat summation by the plants begins sooner in the early spring, and by cumulating growing degree-days, phenological development tends to happen earlier. However, spring frost is still a recurrent phenomenon causing serious damages to buds and therefore, threatening the harvests of the winegrowers. The wind machine is a solution to protect fruit crops against spring frost that is increasingly used. It is composed of a 10-m mast with a blowing fan at its peak. By tapping into the strength of the nocturnal thermal inversion, it sweeps the crop by propelling warm air above to the ground. Thus, stratification is momentarily suppressed. Furthermore, the continuous action of the machine, alone or in synergy, or the addition of a heater allow the bud to be bathed in a warmer environment. Also, the punctual action of the tower’s warm gust reaches the bud directly at each rotation period. All these actions allow the bud to continuously warm up, but with different intensities and over a different period. Although there is evidence of the effectiveness of the wind machines, the thermal transfers involved in those mechanisms raise questions about their true nature. Field measurements based on ultrasonic anemometers and fast responding thermocouples complemented by laboratory measurements on a reduced scale model allow to characterize both the airflow produced by the wind machine and the local temperature in its vicinity. Those experiments were realized in the vineyard of Quincy, in the framework of the SICTAG project. In the future paper, we will detail the aeraulic characterization of the wind machine and the thermal effects resulting from it and we will focus on how the wind machine warms up the local atmosphere and enables to reduce the freezing risk.