Macrowine 2021
IVES 9 IVES Conference Series 9 An overview of wine sensory characterization: from classical descriptive analysis to the emergence of novel profiling techniques

An overview of wine sensory characterization: from classical descriptive analysis to the emergence of novel profiling techniques

Abstract

The wine industry requires coexistence between tradition and innovation to meet consumers’ preferences. Sensory science allows the objective quantification of consumers’ understanding of a product and subjective feedback of consumer’s perception through acceptance or rejection of stimulus or even describing emotions evoked [1]. To measure sensations, emotions and liking, and their dynamics over time, time-intensity methods are crucial tools with growing interest in sensory science [2].

AIM: This research aimed to give a big picture of the latest investigation about sensory methods and their variations, and the successful application of sensory devices and immersive contexts in wine evaluation.

METHODS: An overview of all the recent findings in sensory science methodologies, including sensory descriptive tests (quantitative descriptive analysis (ADQ), flash profiling, projective mapping and napping, check-all-that-apply (CATA), open-ended questions, preferred attribute elicitation method, polarised sensory positioning, free –choice profiling, sorting) [3], sensory discriminative tests (triangle test, tetrad test, duo-trio test, paired comparison, intensity scales, forced-choice tests) [4], sensory hedonic tests (hedonic methods, consumers’ preference, and emotions), time-intensity methods (dual-attribute time-intensity, multiple-attribute time-intensity, temporal dominance of sensations), instrumental sensory devices and immersive techniques (e-nose, e-tongue, virtual reality, gaming) and sensory data treatment are reviewed.

RESULTS: This study is the first attempt to characterize sensory methods and techniques, from classical descriptive analysis to the emergence of novel profiling techniques, comparing the different approaches and predicting some future research on this topic.

CONCLUSIONS:

The characterization of sensory methods and techniques have been investigated in the literature. However, there is a limited articulation between descriptive, discriminative, hedonic tests and time-intensity methods as well as instrumental sensory devices and immersive techniques. Furthermore, statistical techniques in sensory science play a crucial role and increasingly allow a more precise sensory data analysis and more adapted to a complex product such as wine.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Catarina Marques, Alfredo,  Alto Douro, Elisete, CORREIA, Alice, VILELA,

CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
CORREIA, Center for Computational and Stochastic Mathematics (CEMAT), Dep. of Mathematics, IST-UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
VILELA, Chemistry Research Centre (CQ-VR), Dep. of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal;

Contact the author

Keywords

sensory analysis; instrumental sensory devices; immersive techniques; statistical techniques; wine

Citation

Related articles…

Are all red wines equals regarding their vulnerability to Brettanomyces bruxellensis ?

Odours deemed harmful by the consumer and described as “stable”, “horse sweat” or “burnt plastic” can be found in wines. The responsible molecules are volatile phenols, produced by a spoilage yeast: brettanomyces bruxellensis. This species is particularly well adapted to the wine environment and can resists many stresses such as a high alcohol level, a low ph or high levels of SO2, more or less efficiently depending on the strain considered.

Application of the simplified quality bioclimatical index of Fregoni: suggestion of using its evolution curve

Les indices bioclimatiques constituent un bon outil pour piloter le développement vitivinicole dans une région précise

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

The problem of the increasing pH in sparkling wines caused by climate change: use of cationic exchange to correct it

In recent years, the increase in temperature and the changes in rainfall distribution caused by climate change are affecting vine and grape physiology and are consequently impacting wine composition and quality (Schultz, 2000; Jones et al., 2005).

Sensory quality of wines as a trait in MAS grape vine breeding – sensory insights from multiple vintages in a F1 breeding population

In the context of the three global crises of global warming, loss of biodiversity and environmental pollution, current agricultural practices need to be reconsidered [1]. Viticulture in particular can contribute to this by optimising plant protection [2].