Macrowine 2021
IVES 9 IVES Conference Series 9 Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Abstract

AIM: Volatile organic compounds (VOCs) are very important for the characterisation and quality of the final white wine. An oenological practice to increase the extraction of aroma compounds is the cold pre-fermentative maceration [1,2], although it may also release phenolic compounds that confer darker chromatic traits to white wines, not appreciated by consumers. This practice could be improved by the use of enzymes in order to facilitate the release of the odorous molecules. In this study, the effect of different enzyme treatments during skin contact on the chromatic characteristics and volatile composition of white musts from four winegrape varieties was evaluated.

METHODS: Different enzymes presenting distinct single activities (pectolytic and non pectolytic) were added to the must of four white winegrape varieties (Arneis, Greco, Falanghina and Chardonnay) and then subjected to cold pre-fermentative maceration. For each enzyme and variety tested, three berry replicates of 500 g each were randomly selected, added with 10 mg/kg of potassium metabisulphite and crushed. Enzymes were added at a dose of 10 mg/kg. Then, the must was left in contact with the skins for 13 h at 12 °C. Furthermore, other three berry replicates of 500 g each were used as control following the same procedure without enzyme addition. At the end, the musts obtained were separated from the skins and analysed for total polyphenolic index (TPI), chromatic parameters (absorbance at 420 nm and CIELab coordinates), as well as free and glycosylated VOCs. Volatile composition was determined by solid-phase extraction followed by GC-MS analysis [3].

RESULTS: The use of enzymes during cold pre-fermentative maceration resulted in musts having different technological parameters, such as must yield, pH and organic acids content. The chromatic characteristics related to yellow/brown colour (absorbance at 420 nm and CIELab coordinates) and TPI values were dependent on the enzyme used. Indeed, pectin lyase, polygalacturonase and arabinase reduced the yellow colour component of the must obtained when compared to the control sample. Regarding VOCs, different enzymes modulated the release of free forms differently, which are olfactively perceptible, but also they increased the extraction of glycosylated compounds into the grape must. Particularly, most of enzymes tested had a positive effect on the release of terpenes, however the release of norisoprenoids, C6 compounds, alcohols and benzenoids was influenced by both the enzyme used and the variety treated

CONCLUSIONS: The use of different enzymes influenced technological parameters, chromatic characteristics and VOCs contents but some effects were variety dependent. This study may aid oenologists to better understand the action of these enzymes and thus to manage cold pre-fermentative maceration according to the oenological objective.

DOI:

Publication date: September 27, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mattia Malabaila, Stefano BOZ, Maria Alessandra PAISSONI, Carlo MONTANINI, Simone GIACOSA, Luca ROLLE, Susana RÍO SEGADE,

University of Torino, Italy.

Contact the author

Keywords

enzymes, pre-fermentative maceration, volatile organic compounds, chromatic characteristics, white winegrapes

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.