Appliance of climate projections for climate change study in Serbian vineyard regions

Abstract

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate Model EBU-POM. Results are used in calculation of Heliothermal, Drought and Cool Night Index for climate classification of vineyard regions in Serbia. Presented results show significant change of climate in the future, indicating that varieties of grapevine must be adaptable or vineyard regions should be shifted in other areas with appropriate climate.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. Vuković (1,3), M. Vujadinović (1,3), V. Djurdjević (2,3), Z. Ranković-Vasić (1), N. Marković (1), Z. Atanacković (1), B. Sivčev (1), N. Petrović (1)

(1) Faculty of Agriculture, Belgrade University, Nemanjina 6, 11080 Belgrade, Serbia
(2) Institute for Meteorology, Faculty of Physics, Belgrade University, Dobracina 16, 11000 Belgrade, Serbia
(3) South East European Virtual Climate Change Center (hosted by Republic Hydrometeorological Service of Serbia), Bulevar oslobodjenja 8, 11000 Belgrade, Serbia

Contact the author

Keywords

climate projections, grapevine, climate classification

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Vintage by vine interactions most strongly influence Pinot noir grape and wine composition in New Zealand

Vine genetics, fruit maturity, region and vineyard are perceived as factors that strongly influence Pinot noir grape and wine composition. Our study aims to understand the relationship between grape (and ultimately wine) composition and the physical appearance and performance characteristics of a vine (i.e. vine ideotype). Our experimental approach controlled these variables by

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.

Clone performance under different environmental conditions in California

Clonal evaluation of winegrapes in California has not been extensive. Early selection work by Alley (1977), Olmo (unpublished data) and Goheen (personal communication) resulted in the current collection

Biochemical responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

The South African Table grape industry has to expand to new markets with high quality niche products, but limited water availability threatens sustainable production. To overcome this challenge and to obtain high-quality products for the new markets, require constant technological advancement. Currently, limited available scientific information about growth balances and physiology and especially grape quality parameters, hinders technological advancement and thus efficient regulatory management of the morphological, chemical, and pathological status of table grapes, especially in response to abiotic factors.