Appliance of climate projections for climate change study in Serbian vineyard regions

Abstract

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate Model EBU-POM. Results are used in calculation of Heliothermal, Drought and Cool Night Index for climate classification of vineyard regions in Serbia. Presented results show significant change of climate in the future, indicating that varieties of grapevine must be adaptable or vineyard regions should be shifted in other areas with appropriate climate.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. Vuković (1,3), M. Vujadinović (1,3), V. Djurdjević (2,3), Z. Ranković-Vasić (1), N. Marković (1), Z. Atanacković (1), B. Sivčev (1), N. Petrović (1)

(1) Faculty of Agriculture, Belgrade University, Nemanjina 6, 11080 Belgrade, Serbia
(2) Institute for Meteorology, Faculty of Physics, Belgrade University, Dobracina 16, 11000 Belgrade, Serbia
(3) South East European Virtual Climate Change Center (hosted by Republic Hydrometeorological Service of Serbia), Bulevar oslobodjenja 8, 11000 Belgrade, Serbia

Contact the author

Keywords

climate projections, grapevine, climate classification

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

New genomic techniques, plant variety rights and wine law

The paper discusses potential implications of New Genomic Technologies (NGTs) on European Plant Variety and Wine Law.

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

Variety specific thresholds for plant-based indicators of vine nitrogen status

Aim: Several plant-based indicators of vine N status are reported in the literature. Among these, yeast assimilable nitrogen in grape must (YAN) and total N concentration of petiole and leaf blades are considered to be reliable indicators and so is the chlorophyll index, measured with a device called N-tester. The N-tester index is used to measure the intensity of the green colour of the leaf blade, and therefore to estimate its chlorophyll content.

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia.

Assessing the benefits of irrigation access: the case of Southern France vineyards

Agriculture worldwide is threatened by climate change. In particular, declining water resource availability combined with increasing water demand is a key challenge in many rainfed areas, where irrigation appears to be a straightforward adaptation option. In this context, assessing the impacts of irrigation adoption on farm yields and incomes is a necessary step to reflect on the impact of both ex-post and ex-ante policies.