Appliance of climate projections for climate change study in Serbian vineyard regions

Abstract

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate Model EBU-POM. Results are used in calculation of Heliothermal, Drought and Cool Night Index for climate classification of vineyard regions in Serbia. Presented results show significant change of climate in the future, indicating that varieties of grapevine must be adaptable or vineyard regions should be shifted in other areas with appropriate climate.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. Vuković (1,3), M. Vujadinović (1,3), V. Djurdjević (2,3), Z. Ranković-Vasić (1), N. Marković (1), Z. Atanacković (1), B. Sivčev (1), N. Petrović (1)

(1) Faculty of Agriculture, Belgrade University, Nemanjina 6, 11080 Belgrade, Serbia
(2) Institute for Meteorology, Faculty of Physics, Belgrade University, Dobracina 16, 11000 Belgrade, Serbia
(3) South East European Virtual Climate Change Center (hosted by Republic Hydrometeorological Service of Serbia), Bulevar oslobodjenja 8, 11000 Belgrade, Serbia

Contact the author

Keywords

climate projections, grapevine, climate classification

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Yield characteristics and environmental effects of plastic covers on table grape with relation to chemical, physical, radiometric and satellite analyses

Climate change poses a significant challenge for global viticulture, with growing evidence of its negative impact on thermal and hydric regimes, both of which are essential for the development of table grapes.

Effet de l’ombrage respectif des ceps et des grappes de Muscat sur leurs teneurs en composés volatils libres et glycosyles et en précurseurs d’aromes carotenoïdiques

Le Muscat de Frontignan est bien connu pour ses fortes teneurs en composés terpéniques et par l’odeur florale et fruitée que ces composés confèrent aux vins qui en sont issus (1,2).

Effect of must temperature and aspergillopepsin-I supplementation on PR-protein derived peptides

Protein instability in wines is challenging, and despite many efforts to find satisfactory alternatives to bentonite, both in terms of stability and quality, the solutions are limited in the wine industry.

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.

Application of plant growth regulators on Vitis vinifera L var. Mouchtaro affect berry quality characteristics & associated microbial communities

The phenolic profile of the red grapevine varieties berries is a key quality factor and several techniques have been applied to improve it (Perez-Lamela et al., 2007; Singh SK and Sharma, 2010). The last decade the application of resistance elicitors and phytohormones is an innovative viticultural technique (Paladines-Quezada et al., 2021; Alenazi et al., 2019).In the present study, leaves and berries of a Greek red indigenous variety (Mouhtaro) sprayed with two elicitors, benzothiadiazole and chitosan and a plant hormone abscisic acid, during veraison.