Terroir 2020 banner
IVES 9 IVES Conference Series 9 Vintage by vine interactions most strongly influence Pinot noir grape and wine composition in New Zealand

Vintage by vine interactions most strongly influence Pinot noir grape and wine composition in New Zealand


OENO One – Special issue

 Vine genetics, fruit maturity, region and vineyard are perceived as factors that strongly influence Pinot noir grape and wine composition. Our study aims to understand the relationship between grape (and ultimately wine) composition and the physical appearance and performance characteristics of a vine (i.e. vine ideotype). Our experimental approach controlled these variables by studying within-block differences in vine performance across multiple seasons and vineyards. Grapes were sourced at commercial harvest from 20 single vines from 12 vineyard sites in three Pinot noir growing regions (Central Otago, Martinborough and Marlborough) of New Zealand.
Across three vintages yields ranged from 0.1 kg to 6.3 kg per metre, but there was no general relationship between yield and berry soluble solids. On a vine by vine basis normalised yields did not correlate among seasons. Berry extract colour measures were, on average, three-fold higher in 2019 than in 2018.
Principal Component Analysis has indicated that vintage dominated berry composition effects that might otherwise be associated with yield per vine, region and vineyard. The extent of the variation in performance of the same vines between seasons largely excludes factors that are stable between seasons as primary causes. Changes in management of the same vine from year to year appeared the most likely contributors to variation. We have derived highly significant negative linear relationships between vine yield class and the frequency of vines that were within a benchmark specification established for icon vines, providing evidence of the quality risk associated with higher yield. The results also indicate that a proportion of vines meet the benchmark specification at higher yields. From results to date we can further our research confident in the knowledge that factors such as vine yield, region or vineyard are, in themselves, unlikely to be the principal drivers of major differences in Pinot noir grape and wine composition.


Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video


Damian Martin1*, Franzi Grab1 , Claire Grose1 , Lily Stuart1 , Claire Scofield2 , Andrew McLachlan3 and Tanya Rutan4

1 The New Zealand Institute for Plant and Food Research Limited, Marlborough
2 The New Zealand Institute for Plant and Food Research Limited, Clyde
2 The New Zealand Institute for Plant and Food Research Limited, Palmerston North
4 Bragato Research Institute, Marlborough

Contact the author


IVES Conference Series | Terroir 2020


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.