Future scenarios for viticultural climatic zoning in Europe

Abstract

Climate is one of the main conditioning factors of winemaking. In this context, bioclimatic indices are a useful zoning tool, allowing the description of the suitability of a particular region for wine production. In this study, we compute climatic indices for Europe, characterize regions with different viticultural aptitude, and assess possible variations in these regions under a future climate conditions using a state-of-the-art regional climate model. The indices are calculated from climatic variables (mostly daily temperatures and precipitation) obtained from the regional climate model COSMO-CLM for recent and future climate conditions. Maps of theses indices for recent decades (1961-2000) and for the XXI century (following the SRES A1B scenario) are considered to identify possible changes. Results show that climate change is projected to have a significant negative impact in wine quality by increased dryness and cumulative thermal effects during growing seasons in Southern European regions (e.g. Portugal, Spain and Italy). These changes represent an important constraint to grapevine growth and development, making crucial adaptation/mitigation strategies to be adopted. On the other hand, regions of western and central Europe (e.g. southern Britain, northern France and Germany) will benefit from this scenario both in wine quality, and in new potential areas for viticulture. This approach provides a macro-characterization of European areas where grapevines may preferentially grow, as well as their projected changes, and is thus a valuable tool for viticultural zoning in a changing climate.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. C. Malheiro (1), J. A. Santos (1), H. Fraga (1), J. G. Pinto (2)

1) Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trásos-Montes e Alto Douro, 5001-801 Vila Real, Portugal
(2) Institut für Geophysik und Meteorologie, Universität zu Köln, Kerpener Str. 13, 50923 Köln, Germany

Contact the author

Keywords

Viticultural zoning, scenarios, Europe, climate change, CLM

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Phenolic profile of fungus-resistant varieties (PIWIs) for red wine production

Context and Purpose of the Study. PIWI grape varieties (Pilzwiderstandsfähig, fungus-resistant) offer innovative solutions for sustainable viticulture by addressing environmental challenges faced by traditional Vitis vinifera.

Chemical boundaries of wine identity: rationalizing grape and wine aroma diversity for improved terroir management

Aims: Wine perceived quality lies on a number of different factors. Among these, sensory features, which are in turn dependent on chemical composition, play a primary role. There is traditionally a great emphasis on producing wines that have specific sensory profiles, particularly aroma, that reflect identity features connected to the place and the variety of origin. In the case of high quality

Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Soil Electrical Resistivity measurement is a zoning tool used by soil scientists and agronomists in viticulture. Indeed, the measure enables to optimize pedological surveys

Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

In view of sustainability and zero-waste initiatives, the valorisation of sidestreams is a key emerging topic in the wine industry.

Back to the roots: how an underutilised biotechnological tool can support research to improve grapevine resilience against biotic stressors in an unpredictable future

Hairy roots (HRs) are a symptom of a natural genetic modification by the soil-borne phytopathogen Rhizobium rhizogenes.