Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Historic and future climate variability and climate change: effects on vocation, stress and new vine areas (T2010) 9 Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Abstract

[English version below]

Nel 2007 è stata avviata una ricerca nell’areale di produzione del Franciacorta DOCG che ha riguardato un ampio numero di vigneti di Chardonnay con riferimento ai quali sono stati acquisite le serie storiche dal 2001 relative a (i) decorso delle epoche fenologiche, (ii) curve di maturazione e (iii) dati prodotti dalla rete meteorologica consortile. Tali dati hanno permesso di produrre un modello empirico agrofenologico relativo allo Chardonnay nell’areale considerato e di calibrare e validare un modello meccanicistico di simulazione della produttività primaria, chiamato SIM_PP.

In 2007 a research was started on an high number of vineyards in the Franciacorta AOC area. From 2001 to 2009, phonological stages records and ripening kinetics data were collected. Starting from phenological data, an empiric agrophenological model was build, in order to estimate principal stages by using daily cumulated temperature. Furthermore, ripening kinetics were compared to mechanicistic model simulations (SIM_PP, Mariani and Maugeri, 2002). Starting from air daily temperatures, SIM_PP simulates the Net Primary Production, allocation dynamics in sink organs and the sugars storage in berries, using a mechanism based on transpiration and mass transport flux.
The comparison between real in-field situation and gathered simulations allowed to evaluate mechanicistic and empirical models performance.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Paolo Carnevali (1), Luigi Mariani (1), Osvaldo Failla (1), Lucio Brancadoro (1), Monica Faccincani (2)

(1) Di.Pro.Ve., Università degli Studi di Milano Via Celoria 2, Milano, Italia
(2) Consorzio per la Tutela del Franciacorta Via G. Verdi 53, Erbusco (BS), Italia

Contact the author

Keywords

Chardonnay, Franciacorta, variabilità climatica, modelli di simulazione, accumulo zuccherino
Chardonnay, Franciacorta, climatic variability, models, sugar storage

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

Comparison of the skin resistance of several grape varieties in relation to their physico-chemical properties

The purpose of this study is to compare the skin resistance (SR) of the grapes with physico-chemical propertiess using a stong dataset and multidimentional statistical analysis .
A recent study has shown the role skin resistance plays against pest invasion but skin resistance could be a useful agronomic parameter, for example in the choice of the type of winemaking, by influencing the quantity of juice during crushing and maceration.

Effects of grapevine mycorrhizal association on fine root dynamics depend on rootstock genotype

Context and Purpose of the study. Arbuscular mycorrhizal fungi (AMF) symbiosis with grapevines is a key component of vineyard ecosystems.