Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Historic and future climate variability and climate change: effects on vocation, stress and new vine areas (T2010) 9 Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Abstract

[English version below]

Nel 2007 è stata avviata una ricerca nell’areale di produzione del Franciacorta DOCG che ha riguardato un ampio numero di vigneti di Chardonnay con riferimento ai quali sono stati acquisite le serie storiche dal 2001 relative a (i) decorso delle epoche fenologiche, (ii) curve di maturazione e (iii) dati prodotti dalla rete meteorologica consortile. Tali dati hanno permesso di produrre un modello empirico agrofenologico relativo allo Chardonnay nell’areale considerato e di calibrare e validare un modello meccanicistico di simulazione della produttività primaria, chiamato SIM_PP.

In 2007 a research was started on an high number of vineyards in the Franciacorta AOC area. From 2001 to 2009, phonological stages records and ripening kinetics data were collected. Starting from phenological data, an empiric agrophenological model was build, in order to estimate principal stages by using daily cumulated temperature. Furthermore, ripening kinetics were compared to mechanicistic model simulations (SIM_PP, Mariani and Maugeri, 2002). Starting from air daily temperatures, SIM_PP simulates the Net Primary Production, allocation dynamics in sink organs and the sugars storage in berries, using a mechanism based on transpiration and mass transport flux.
The comparison between real in-field situation and gathered simulations allowed to evaluate mechanicistic and empirical models performance.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Paolo Carnevali (1), Luigi Mariani (1), Osvaldo Failla (1), Lucio Brancadoro (1), Monica Faccincani (2)

(1) Di.Pro.Ve., Università degli Studi di Milano Via Celoria 2, Milano, Italia
(2) Consorzio per la Tutela del Franciacorta Via G. Verdi 53, Erbusco (BS), Italia

Contact the author

Keywords

Chardonnay, Franciacorta, variabilità climatica, modelli di simulazione, accumulo zuccherino
Chardonnay, Franciacorta, climatic variability, models, sugar storage

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Bilan hydrique: une méthode proposée pour l’évaluation des réserves hydriques dans le zonage viticole

Dans le zonage viticole mis en place dans la province de Taranto, on a introduit la méthode du bilan hydrique pour évaluer les réserves hydriques dans les 8 zones déterminées

Aromatic maturity is a cornerstone of terroir expression in red wine

Harvesting grapes at adequate maturity is key to the production of high-quality red wines. Enologists and wine makers define several types of maturity, including technical maturity, phenolic maturity and aromatic maturity. Technical maturity and phenolic maturity are relatively well documented in the scientific literature, while articles on aromatic maturity are scarcer. This is surprising, because aromatic maturity is, without a doubt, the most important of the three in determining wine quality and typicity (including terroir expression). Optimal terroir expression can be obtained when the different types of maturity are reached at the same time, or within a short time frame. This is more likely to occur when the ripening takes place under mild temperatures, neither too cool, nor too hot. Aromatic expression in wine can be driven, from low to high maturity, by green, herbal, fresh fruit, ripe fruit, jammy fruit, candied fruit or cooked fruit aromas. Green and cooked fruit aromas are not desirable in red wines, while the levels of other aromatic compounds contribute to the typicity of the wine in relation to its origin. Wines produced in cool climates, or on cool soils in temperate climates, are likely to express herbal or fresh fruit aromas; while wines produced under warm climates, or on warm soils in temperate climates, may express ripe fruit, jammy fruit or candied fruit aromas. Growers can optimize terroir expression through their choice of grapevine variety. Early ripening varieties perform better in cool climates and late ripening varieties in warm climates. Additionally, maturity can be advanced or delayed by different canopy management practices or training systems.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

Advanced phenology due to climate change is projected to shift precipitation patterns for key cultivar-region combinations in New Zealand

Context of the study. Shifts in grapevine phenology driven by temperature increase due to climate change may result in different rainfall profiles between phenological stages.

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms.