Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Historic and future climate variability and climate change: effects on vocation, stress and new vine areas (T2010) 9 Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Abstract

[English version below]

Nel 2007 è stata avviata una ricerca nell’areale di produzione del Franciacorta DOCG che ha riguardato un ampio numero di vigneti di Chardonnay con riferimento ai quali sono stati acquisite le serie storiche dal 2001 relative a (i) decorso delle epoche fenologiche, (ii) curve di maturazione e (iii) dati prodotti dalla rete meteorologica consortile. Tali dati hanno permesso di produrre un modello empirico agrofenologico relativo allo Chardonnay nell’areale considerato e di calibrare e validare un modello meccanicistico di simulazione della produttività primaria, chiamato SIM_PP.

In 2007 a research was started on an high number of vineyards in the Franciacorta AOC area. From 2001 to 2009, phonological stages records and ripening kinetics data were collected. Starting from phenological data, an empiric agrophenological model was build, in order to estimate principal stages by using daily cumulated temperature. Furthermore, ripening kinetics were compared to mechanicistic model simulations (SIM_PP, Mariani and Maugeri, 2002). Starting from air daily temperatures, SIM_PP simulates the Net Primary Production, allocation dynamics in sink organs and the sugars storage in berries, using a mechanism based on transpiration and mass transport flux.
The comparison between real in-field situation and gathered simulations allowed to evaluate mechanicistic and empirical models performance.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Paolo Carnevali (1), Luigi Mariani (1), Osvaldo Failla (1), Lucio Brancadoro (1), Monica Faccincani (2)

(1) Di.Pro.Ve., Università degli Studi di Milano Via Celoria 2, Milano, Italia
(2) Consorzio per la Tutela del Franciacorta Via G. Verdi 53, Erbusco (BS), Italia

Contact the author

Keywords

Chardonnay, Franciacorta, variabilità climatica, modelli di simulazione, accumulo zuccherino
Chardonnay, Franciacorta, climatic variability, models, sugar storage

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Exploring non-Saccharomyces wine yeasts native from Castilla-La Mancha (Spain) to enhance bioprotection and quality of wines

The current tendency to reduce SO2 in winemaking, due to its adverse effects in sensitive individuals [1], has led to the development of new techniques to mitigate SO2 absence and to exert the same antimicrobial and antioxidant effects.

Mannoprotein extracts from wine lees: characterization and impact on wine properties

This study aims at exploiting an undervalued winemaking by-product, wine yeast lees, by developing efficient and food-grade methods for the extraction of yeast glycoproteins. These extracts were then supplemented to wine and their impact on wine properties assessed.

Quali cantine perle strade del vino

Tutte le cantine possono aprirsi al pubblico? Evidentemente si, nessuno può impedire ad un produttore di accogliere i turisti.
Tutte le cantine possono far parte delle Strade del vino? No, perché la Strada del vino mette in gioco la reputazione della denominazione di origine alla quale è legata e le possibilità di sviluppo economico di un intero territorio.

Genetics of adventitious root formation in grapevines

Commercial grapevine propagation relies on the ability of dormant wood material to develop adventitious roots.

Climate change impacts: a multi-stress issue

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.