Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Historic and future climate variability and climate change: effects on vocation, stress and new vine areas (T2010) 9 Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Abstract

[English version below]

Nel 2007 è stata avviata una ricerca nell’areale di produzione del Franciacorta DOCG che ha riguardato un ampio numero di vigneti di Chardonnay con riferimento ai quali sono stati acquisite le serie storiche dal 2001 relative a (i) decorso delle epoche fenologiche, (ii) curve di maturazione e (iii) dati prodotti dalla rete meteorologica consortile. Tali dati hanno permesso di produrre un modello empirico agrofenologico relativo allo Chardonnay nell’areale considerato e di calibrare e validare un modello meccanicistico di simulazione della produttività primaria, chiamato SIM_PP.

In 2007 a research was started on an high number of vineyards in the Franciacorta AOC area. From 2001 to 2009, phonological stages records and ripening kinetics data were collected. Starting from phenological data, an empiric agrophenological model was build, in order to estimate principal stages by using daily cumulated temperature. Furthermore, ripening kinetics were compared to mechanicistic model simulations (SIM_PP, Mariani and Maugeri, 2002). Starting from air daily temperatures, SIM_PP simulates the Net Primary Production, allocation dynamics in sink organs and the sugars storage in berries, using a mechanism based on transpiration and mass transport flux.
The comparison between real in-field situation and gathered simulations allowed to evaluate mechanicistic and empirical models performance.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Paolo Carnevali (1), Luigi Mariani (1), Osvaldo Failla (1), Lucio Brancadoro (1), Monica Faccincani (2)

(1) Di.Pro.Ve., Università degli Studi di Milano Via Celoria 2, Milano, Italia
(2) Consorzio per la Tutela del Franciacorta Via G. Verdi 53, Erbusco (BS), Italia

Contact the author

Keywords

Chardonnay, Franciacorta, variabilità climatica, modelli di simulazione, accumulo zuccherino
Chardonnay, Franciacorta, climatic variability, models, sugar storage

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Spotted lanternfly, a new invasive insect in vineyards: is it a threat to grapevines?

The spotted lanternfly (SLF; Lycorma delicatula) is a phloem-feeding polyphagous insect invasive to the Eastern U.S.. Since its first detection in Pennsylvania (U.S.) in 2014, large infestations and economic damage (e.g., decreased yield, vine decline, greater pesticide use) have been reported in an increasing number of vineyards, threatening the sustainability and growth of the wine industry in infested regions. Our team has been investigating the impacts of SLF phloem-feeding on physiological processes, fruit production, juice, and wine composition of different grape cultivars, and also evaluated if the SLF can transmit important grapevine pathogens. In addition, we are working closely with stakeholders to better enumerate the economic damage caused by this pest. These findings will provide relevant information to grape and wine producers to help identify action thresholds and develop a more targeted integrated pest management program.

Characterization of the mechanisms underlying the tolerance of genotypes of Uva Cão to climate change: A transcriptomic and genomic study

Climate change has been influencing viticulture and changing wine profiles in the past years, and effects are expected to get worse.

Effect of polysaccharide extracts from grape pomace on the oxidative evolution of hydroxycinnamic acids

Phenolic acids are especially sensitive to oxidation, so they can greatly impact wine sensory characteristics and stability [1]. Furthermore, extracts derived from grape pomace have been previously postulated as possible oenological adjuvants for wine protection [2].

Better understand the soil wet bulb formation with subsurface or aerial drip irrigation in viticulture

The gradual change in rainfall patterns experienced in the south of France vineyards, especially around the Mediterranean sea, means that the vines are increasingly subject to summer drought. The winegrowers developped the use of irrigation techniques to ensure the maintenance of competitive yields in the production of wines under Protected Geographical Indication label. In practice, drip irrigation pipes can be installed above the ground or buried into the soil as well as at different distances from the vine row. The objective of this study was to examine the profiles of the wet bulbs of the soil obtained from two drip irrigation systems : aerial drip located under the vine row and subsurface drip placed in the middle of the inter-row. This experiment took place over two consecutive seasons (2020-2021) on a 3.4 ha Viognier plot in the Mediterranean region (PGI Oc, France) on sandy clay soil. The annual rainfalls were less than 400 mm. Soil water content probes were installed at different depths (20 – 40 – 60 – 80 cm) and at different lateralities from the vine row (30 – 60 – 90 – 120 cm) to control the formation of the soil wet bulb during irrigation. The mapping and the analysis of the data allowed a better understanding and differentiation of the water percolation when irrigating with subsurface or aerial drip. For the same amount of water and without differences of vine water status, it is shown that in a subsurface drip irrigation situation, the size of the wet bulb formed is larger than in aerial drip irrigation system.

Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Red wine is a beverage with one of the highest polyphenol concentration, which are extracted during the maceration step of the winemaking process.