Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Historic and future climate variability and climate change: effects on vocation, stress and new vine areas (T2010) 9 Effect of vine nitrogen status on grape and wine quality: Terroir study in the Vaud vineyard (Switzerland)

Effect of vine nitrogen status on grape and wine quality: Terroir study in the Vaud vineyard (Switzerland)


This study was conducted on soil-climate-plant relations (terroir) and their impact on grape composition and wine quality in the canton of Vaud by Agroscope Changins-Wädenswil ACW. An assessment of the vine nitrogen status on different terroirs was made by means of chlorophyll index, leaf nitrogen content and yeast assimilable nitrogen. Vine nitrogen status was observed to be highly related to soil type. Vines on the soil type “bottom moraines” showed lower vigour, smaller berries and a lower nitrogen status. Sensory analysis discriminated wines from different soil types. Vine nitrogen status through yeast assimilable nitrogen turned out to be strongly correlated with wine positive sensory descriptors and negatively correlated to wine astringency. In our study, the main environmental factors influencing vine development and wine quality was the soil type via its effect on vine nitrogen level. Our results confirm the role on nitrogen supply in grape and wine quality and underline nitrogen as a key factor in understanding the terroir effect.


Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article


J-S Reynard, V. Zufferey, F. Murisier

Agroscope Changins-Wädenswil ACW, CH-1260 NYON, Switzerland

Contact the author


Soil component of terroir, vine nitrogen status, ecophysiology, grape and wine quality


IVES Conference Series | Terroir 2010


Related articles…

Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Le terroir peut être défini comme un écosystème dans lequel la vigne interagit avec le climat et le sol et dont la résultante est le vin.


Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

Effect of different winemaking practices on chemical composition, aroma profile and sensory perception of ribolla gialla sparkling wines

This study aims at evaluating the effects of different refermentation methods (Martinotti/Charmat vs. Classic) on the chemical composition, aroma profile and sensory characteristics of Ribolla Gialla sparkling wines; furthermore, certain winemaking practices (skin contact and use of pectolytic enzymes) were investigated considering the extraction of varietal aromas and aroma precursors. METHODS: Sparkling wines were produced at pilot-plant scale. Concerning refermentation methods, traditional Martinotti (MB – 30 days length), extended Martinotti (ML) with 4 months of aging on lees and Classic method (CL) with 11 months of aging on lees were compared; in a second trial, skin contact (MM), enzyme addition on must also subjected to maceration (ME), and enzyme addition on base wine (VE) were evaluated. All experimental trials were performed in triplicate. Basic chemical composition, varietal (terpenes and C13-norisoprenoids in free and bound form) and non-varietal aroma compounds were evaluated by LLE-GCMS analysis; finally, sensory analysis was also performed, by descriptive testing.

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as