Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Arsenic in berries and its correlation with natural soil content: experience in Trentino (Italy)

Arsenic in berries and its correlation with natural soil content: experience in Trentino (Italy)

Abstract

[English version below]

Il lavoro presenta l’evoluzione dei contenuti di arsenico nelle uve durante lo sviluppo e la maturazione, e la sua distribuzione nell’acino; verifica inoltre la relazione tra i contenuti di As nelle uve, nelle foglie e nei suoli caratterizzati da una dotazione differente e naturale di questo elemento.
Nella bacca l’arsenico cresce durante la stagione vegetativa e a maturazione è localizzato nella polpa (50%), nella buccia (40%) e in minima parte nei semi.
La correlazione tra i contenuti di As nelle bacche raccolte in 18 vigneti, nelle corrispondenti foglie e nei rispettivi suoli estratti con acetato di ammonio risulta statisticamente significativa.

The work illustrates arsenic content in grapes during development and ripening and its distribution in the berry, together with the relationship between As content in grape berries, leaves and soils where this element is naturally present in different amounts.
Arsenic increases in the berry during the growing season and is located in the pulp (50%), the skin (40%) and to a lesser extent in the seeds in ripe berries.
The correlation between the As content in berries collected in 18 vineyards and in the corresponding leaves and soils, extracted using ammonium acetate, is statistically significant.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Bertoldi (1,2), R. Larcher (1), G. Nicolini (1), M. Bertamini (1), G. Concheri (2)

(1) IASMA – Fondazione E. Mach, via Mach 1, 38010 San Michele all’Adige (TN), Italy
(2) Università di Padove, Dip. Biotecnologie Agrarie, viale dell’Università, 16, 35020 Legnaro (PD), Italy

Contact the author

Keywords

arsenico, arsenico biodisponibile, suolo, Vitis, acino, ICP-MS
arsenic, bioavailable arsenic, soil, Vitis, grape berry, ICP-MS

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Stabilità dei caratteri fenotipici dl alcune cv in diversi pedopaesaggi friulani. Applicazione del metodo nella caratterizzazione viticola del comprensorio DOC “Friuli-Grave”

This communication was estracted from a study concerning the viticultural characterization of A.V.A. “Friuli-Grave” area sponsored by Chamber of Commerce of Pordenone.

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

Towards a unified terroir zoning methodology in viticulture

In viticulture, terroir is a key concept that refers to an area and thus possesses a geographical dimension. Hence, zoning of viticultural terroir is an important issue

Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

The UV-C light enhances oxidative processes in wine. Increasing the dose of UV-C can lead to olfactoric, gustatoric and colour changes in wine. These changes are triggered by a series of photochemical reactions such as degradation of esters, the formation of odour-active substances such as 2 aminoacetophenone through the photooxidation of amino acids. Ultimately, these reactions can lead to a reduced wine quality.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].