Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Arsenic in berries and its correlation with natural soil content: experience in Trentino (Italy)

Arsenic in berries and its correlation with natural soil content: experience in Trentino (Italy)

Abstract

[English version below]

Il lavoro presenta l’evoluzione dei contenuti di arsenico nelle uve durante lo sviluppo e la maturazione, e la sua distribuzione nell’acino; verifica inoltre la relazione tra i contenuti di As nelle uve, nelle foglie e nei suoli caratterizzati da una dotazione differente e naturale di questo elemento.
Nella bacca l’arsenico cresce durante la stagione vegetativa e a maturazione è localizzato nella polpa (50%), nella buccia (40%) e in minima parte nei semi.
La correlazione tra i contenuti di As nelle bacche raccolte in 18 vigneti, nelle corrispondenti foglie e nei rispettivi suoli estratti con acetato di ammonio risulta statisticamente significativa.

The work illustrates arsenic content in grapes during development and ripening and its distribution in the berry, together with the relationship between As content in grape berries, leaves and soils where this element is naturally present in different amounts.
Arsenic increases in the berry during the growing season and is located in the pulp (50%), the skin (40%) and to a lesser extent in the seeds in ripe berries.
The correlation between the As content in berries collected in 18 vineyards and in the corresponding leaves and soils, extracted using ammonium acetate, is statistically significant.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

D. Bertoldi (1,2), R. Larcher (1), G. Nicolini (1), M. Bertamini (1), G. Concheri (2)

(1) IASMA – Fondazione E. Mach, via Mach 1, 38010 San Michele all’Adige (TN), Italy
(2) Università di Padove, Dip. Biotecnologie Agrarie, viale dell’Università, 16, 35020 Legnaro (PD), Italy

Contact the author

Keywords

arsenico, arsenico biodisponibile, suolo, Vitis, acino, ICP-MS
arsenic, bioavailable arsenic, soil, Vitis, grape berry, ICP-MS

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

Landscapes of Vines and Wines Patrimony – Stakes – Valorisation

The interaction between wine and landscapes is of an unsuspected richness. On the one side, the vineyards form part of the landscapes which they model. On the other side, the wines are related in their perception to the image of a region, a landscape and are at the origin of a cultural richness.

Investigation on the potentiality of a biostimulant by Fabaceae tissues and rich in triacontanol to enhance grapevine resilience under drought stress

The primary objective of this research was to investigate the potential benefits of a Fabaceae-based product rich in triacontanol (a long-chain alcohol) applied to Vitis vinifera cv. Merlot, on key physiological and productive parameters of grapevines under controlled water stress conditions.

From grapevines to extreme environments … and back?

I performed my PhD in grapevine physiology under the supervision of Dr. H. Medrano, standing in the vineyards from pre-dawn to sunrise during many hot, wet and sunny days with my colleagues J.M.E. and J.B. I also spent many days and nights facing ticks year-round working in Mediterranean macchias with J.Gu. and M.M. Later I was able to supervise PhD students on grapevines – like A.P. and M.T. – and on Mediterranean vegetation – like J.Gal. With the incorporation to the group of M.R.-C. ‘the puzzle’ was completed and, combining the aforementioned studies, we could conclude (more than 20 years ago) things like: (1) stomatal conductance is the best proxy for ‘water stress’ in studies on photosynthesis; (2) steady-state chlorophyll fluorescence retrieves photosynthesis under saturating light; (3) photoinhibition is not a major photosynthetic limitation under water stress; (4) mesophyll conductance instead is; and (5) mesophyll conductance is a major driver of leaf water use efficiency.

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Context description and research question: an increasing number of farmers are considering the impact of conservation practices on soil health to guide sustainable management of vineyards. Understanding impacts of soil management on soil organic carbon (SOC) is one lever for adoption of agroecological practice with potential to help maintain or improve soil health while building SOC stocks to mitigate climate change (Amelung et al., 2020).