Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Proposal of zonification and characterization of terroirs in the Yalde-Najerilla-Uruñuela vine growing area (DOC Rioja, Spain), based on the soil influence

Proposal of zonification and characterization of terroirs in the Yalde-Najerilla-Uruñuela vine growing area (DOC Rioja, Spain), based on the soil influence

Abstract

Natural Terroir Units (NTU) are being delimited in vine growing area DOCa Rioja, in collaboration with Uruñuela Cooperative, to characterized specific and singular Tempranillo (Vitis vinifera, L.) wines. NTU selection is based on detailed cartography (1:20.000), managed by the Soil Information System of La Rioja (SISR), and in the analysis of pedologic, climatic, lithologic, and relief features of Najerilla Valley.
The five NTU, placed on river and torrential platforms with similar lithology of original materials, have been selected with series of soils belong to the Alfisol, Inceptisol and Mollisol orders. The main purpose of this project is to measure the influence produced by soil properties of each series of soil (effective depth, water reserve, clay and carbonates percentage, potassium and magnesium) in musts and wines of this vine growing area.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

E. García-Escudero, J. Mª. Martínez, E. P. Pérez, R. López and I. Martín

Servicio de Investigación y Desarrollo Tecnológico Agroalimentario (SIDTA-CIDA)-ICVV
Ctra. Logroño-Mendavia NA-134 Km. 90. 26071 Logroño, La Rioja (Spain)

Contact the author

Keywords

Terroir, soil, Tempranillo, grapevine, wine

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Étude des relations sol-vigne sur le vignoble de Côte Rôtie

La topographie du vignoble de Côte Rôtie, la prédominance de la non culture ainsi que la structure très légère des sols amènent les vignerons à s’interroger sur l’entretien du sol, la conduite de la fertilisation de leurs parcelles ainsi que sur le développement racinaire de la vigne.

Management of cover plants impacted the composition of Cabernet Sauvignon red wines in a temperate region of Brazil

– Several practices can be applied to vineyards in order to ensure good healthy for grapevines, adequate yield and fruit quality. Among them, the use of cover crops is a relevant option for soil management. It increases the organic matter, improves water infiltration, reduces risks of soil erosion and greenhouse gas emissions, in addition improving biodiversity in the vineyard.

Phytochemical composition of Artemisia absinthium L.

Absinthe is historically described as a distilled, highly alcoholic beverage. It is an anise-flavoured spirit derived from botanicals, including the flowers and leaves of Artemisia absinthium L. (“grand wormwood”), together with green anise, sweet fennel, and other medicinal and culinary herbs.

First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.