Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Proposal of zonification and characterization of terroirs in the Yalde-Najerilla-Uruñuela vine growing area (DOC Rioja, Spain), based on the soil influence

Proposal of zonification and characterization of terroirs in the Yalde-Najerilla-Uruñuela vine growing area (DOC Rioja, Spain), based on the soil influence

Abstract

Natural Terroir Units (NTU) are being delimited in vine growing area DOCa Rioja, in collaboration with Uruñuela Cooperative, to characterized specific and singular Tempranillo (Vitis vinifera, L.) wines. NTU selection is based on detailed cartography (1:20.000), managed by the Soil Information System of La Rioja (SISR), and in the analysis of pedologic, climatic, lithologic, and relief features of Najerilla Valley.
The five NTU, placed on river and torrential platforms with similar lithology of original materials, have been selected with series of soils belong to the Alfisol, Inceptisol and Mollisol orders. The main purpose of this project is to measure the influence produced by soil properties of each series of soil (effective depth, water reserve, clay and carbonates percentage, potassium and magnesium) in musts and wines of this vine growing area.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

E. García-Escudero, J. Mª. Martínez, E. P. Pérez, R. López and I. Martín

Servicio de Investigación y Desarrollo Tecnológico Agroalimentario (SIDTA-CIDA)-ICVV
Ctra. Logroño-Mendavia NA-134 Km. 90. 26071 Logroño, La Rioja (Spain)

Contact the author

Keywords

Terroir, soil, Tempranillo, grapevine, wine

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

Nitrogen fertilization is an important practice to guarantee vineyards sustainability and performance over years, while ensuring berry quality. However, achieving a precise nitrogen fertilization to meet specific objectives of production is difficult. There is a lack of knowledge on the impact of nitrogen fertilizers (soil/foliar; organic/mineral) and different levels of fertilization on the interactions between carbon and nitrogen cycles within the vine. Crop models may be useful in that purpose because they can provide new insights of the effects of fertilization in carbon and nitrogen storage. The objective of this study is to build a model to simulate grapevine carbon and nitrogen content in vines to evaluate the impact of different fertilization strategies in vine growth and yield.

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

On the impact of preformed α-dicarbonyls in the production of Strecker aldehydes. Exploring the addition of sacrificial amino acids as a tool to reduce Strecker aldehydes production

The reaction between Strecker amino acids and α-dicarbonyls is a key pathway in the formation of Strecker aldehydes (SA), which are crucial oxidation-related odorants in wine [1].

Cultivation site effect on the quality of Moscato di Pantelleria

n 1997 and 1999, sixteen cultivation sites of cv. Muscat of Alexandria different for pedological conditions, altitude and exposition were selected through all Pantelleria isle. In 1997 in each site