Lead levels in fortified wines


AIM: The main lead exposure route is the intake of contaminated food, water, and alcoholic beverages, in particular wine. At the gastric level, Pb is transformed into a soluble compound which, when conveyed into the bloodstream, is the long-term cause of saturnism, intoxication with neurotoxic, nephrotoxic and hematopoietic effects, and with the neurological developmental delay of children. Pb is classified by the International Agency for Research on Cancer as a 2A class, possible carcinogenic to humans. In an opinion on possible health risks, CONTAM considered that cereals, vegetables, drinking water, and wine give a greater contribute to dietary exposure to Pb in Europe. Large quantities of wine, beer, and other alcoholic products drinking can increase daily Pb intake above the maximum permitted levels. The JECFA/WHO committee defined a Provisional Tolerable Weekly Intake (PTWI) for lead of 25 µg/kg body weight for all age groups. The presence of lead in grapes, wines and other alcoholic products has been reported for many years and is influenced by a series of factors that characterize wineries (country of origin, different climatic conditions, grape cultivars, soil composition, environmental industrial emissions of lead, historical and present, motor vehicle exhausts gases, metal-based fungicides and insecticides, fertilizers and winemaking processes, including cellar equipment). The aim of this work was to detect the Pb content in fortified wines from central Italy, in particular from Abruzzo.

METHODS: The analysis was performed in ICP-MS. The wine samples were diluted ten times with HNO3 (2%) and analyzed in triplicate. The external standard method and the calibration solutions prepared in 2% ethanol/2% HNO3 were used for the quantification of Pb. The data obtained was analyzed using the ICP-MS ChemStation.

RESULTS: The results of a study conducted on the trace elements presence, including Pb, in Italian fortified wines agree with the literature data relating to the Pb content, which is lower than the limit allowed by current legislation, with the exception of a sample relating to the “Vino cotto”, of artisanal production.


These results can contribute to the formation of a database to protect the consumers health. The wines Pb content is established by the Commission regulation (EU) 2015/1005 of 25 June 2015 which defines the maximum admitted value at 0.15 mg/L. The International Organization of Vine and Wine (OIV) in 2020 reduced the limit to 0.10 mg/L for wines and 0.15 mg/L for fortified wines.


Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article


Angelo Cichelli

Department of Medical, Oral and Biotechnological Sciences – DiSMOB. “G. D’Annunzio” University of Chieti-Pescara – Via dei Vestini, Chieti, Italy.,Laura CASORRI, Department of Technological Innovations and safety of plants, products and anthropic settlements (DIT) – National Institute for Insurance against Accidents at Work (INAIL). Rome, Italy.  Ada CONSALVO Center for Advances Studies and Technologies (CAST) University “G. d’Annunzio” of Chieti-Pescara, Italy.  Marco DI LUIGI, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene – National Institute for Insurance against Accidents at Work (INAIL) – Research Centre Monte Porzio Catone – Rome, Italy.  Massimo DI MARTINO, Ispettorato Centrale della tutela della Qualita’ e della Repressione Frodi dei prodotti agroalimentari (ICQRF). Pescara, Italy.  Barbara FICOCIELLO, Department of Technological Innovations and safety of plants, products and anthropic settlements (DIT) – National Institute for Insurance against Accidents at Work (INAIL). Rome, Italy.  Eva MASCIARELLI, Department of Technological Innovations and safety of plants, products and anthropic settlements (DIT) – National Institute for Insurance against Accidents at Work (INAIL). Rome, Italy.

Contact the author


lead, fortified wine, maximum value, oiv


Related articles…

Aromatic profile of six different clones of Chardonnay grape berries in Minas Gerais (Brazil)

Aromas are one of the key points in food analysis since they are related to character, quality and consequently consumer acceptance. It is not different in the winery industry, where the aromatic profile is a combination of viticultural and oenological practices. Based on the development of more aromatic clones and on the potential to produce sparkling wines at Caldas, in the southern region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1,100m), the aim of this work was the determination of volatile compounds in six different clones of Chardonnay grape berries to better understand which compounds add bouquet to the wine, and additionally comprehend the impacts of the edaphoclimatic and annual conditions on the improvement of grape-growing and winemaking practices.

Malolactic fermentation in wine production

What influence do these bacteria have on wines? What new bacteria are being studied to carry out this fermentation? Find below articles about malolactic fermentation published in our 3 media (OENO One, IVES Technical Reviews and IVES Conference Series). OENO One...

Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Perceived aroma plays an important role in wine quality, and it depends mainly on the volatile composition. Volatile organic compounds (VOCs) from grapes and those formed during winemaking are involved in the sensory complexity of wines. In aroma-neutral winegrape varieties, the winemaking process itself, and particularly alcoholic fermentation (AF), impacts strongly on the organoleptic characteristics of wines due to the formation of volatile alcohols, acids, and esters. In addition, phenolic compounds could contribute not only to the wine color but also to VOCs evolution during AF.

Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Grapevine yield and wine quality are dependent on good quality vegetative growth and root development. Soils that restrict proper grapevine root development, together with the high cost of establishing a new vineyard, require effective soil preparation to sustain productive vineyards for 25 years. This study reviews soil preparation research conducted over the past 50 years and identifies best practices to remove soil physical and chemical impediments to create optimum conditions for root growth.

Soils, climate, nutritive status and production of cv “Palomino fino” in the superior quality area of the Jerez-Xérès-Sherry zone

The Registered Appellation of Origin Mark (RAOM) « Jerez-Xérès-Sherry and Manzanilla Sanlucar de Barrameda » is one of the oldest and more important zone in wine history and production. «Albarizas» unit (white calcareous marls with sea-fossils) is the most representative geological material of the RAOM (75%) and even more in the central-NW area of the RAOM, known as «Jerez Superior» area (Superior Quality Sherry Area). « Albarizas » form undulated hillocks (3-10% slope) and hills (>10% slope), the litologic unit has E-W and S-W direction, and Regosols and Leptosols are the principal soils.