Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing soils 9 Soil chemistry as a measure of the distinctiveness of american viticultural areas of the Columbia basin, USA

Soil chemistry as a measure of the distinctiveness of american viticultural areas of the Columbia basin, USA

Abstract

The Columbia Basin, a semi-arid region centered in the eastern part of Washington State, is the second largest wine grape growing region in the United States and presently contains 10 American Viticultural Areas (AVAs). Eight of the Columbia Basin’s AVAs are smaller subdivisions (sub-AVAs) of the 46,100 km2 Columbia Valley AVA. Although legally distinct, the Columbia Basin AVAs are generally similar with regard to climate, landscape, and soils, the principle components of physical terroir.

To test whether the AVAs of the Columbia Basin are distinguishable based on the chemical properties of their soils, 53 samples were collected from vineyards considered to be representative within their respective AVAs. Sampled locations within each vineyard were selected as typical based on the advice of resident viticulturalists. Vineyard soils from the Willamette Valley and Snake River Valley, which are other major viticultural regions of the Pacific Northwest, were also sampled for comparison.

Soils were sampled from a depth of 50-75 cm and analyzed for bulk chemistry and plant-available nutrients. The analyses revealed that, of the 10 AVAs, only the Columbia Gorge, Walla Walla Valley, and Lake Chelan AVAs have distinct differences that could be attributed to variations in climate and parent material. Columbia Basin soils could be readily distinguished from vineyard soils of the Willamette Valley and Snake River Valley based on compositional differences that result primarily from variations in soil parent material and climate-controlled rates of weathering.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Kevin POGUE, Erica PITCAVAGE

Department of Geology, Whitman College, 345 Boyer Ave., Walla Walla, WA 99362 USA

Contact the author

Keywords

Columbia Basin, Columbia Valley, soil, chemistry, Pacific Northwest.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

The Bull’s Blood of Eger (‘Egri Bikavér’) is one of the most reputed red wines in Hungary and abroad, produced in the Northeastern part of the country.

Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Aims: Shiraz is the most widely cultivated grape variety in Australia, and is grown under a range of viticultural and climatic conditions. Given its importance to the Australian wine sector, a number of studies have been conducted in recent years which involved a comprehensive assessment of grape composition, in order to objectively predict wine quality and style outcomes.

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection

Fermentation Products, Degradation Parameters, (Poly)Phenols And Potassium Content In Tokaji Aszú Winemaking

The historic Tokaj Wine Region in northeast Hungary, a UNESCO World Heritage region since 2002, encompasses 5,500 ha vineyards. Produced from “noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil conditions (clay, loess on volcanic bedrock) and grape