Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing soils 9 Soil chemistry as a measure of the distinctiveness of american viticultural areas of the Columbia basin, USA

Soil chemistry as a measure of the distinctiveness of american viticultural areas of the Columbia basin, USA


The Columbia Basin, a semi-arid region centered in the eastern part of Washington State, is the second largest wine grape growing region in the United States and presently contains 10 American Viticultural Areas (AVAs). Eight of the Columbia Basin’s AVAs are smaller subdivisions (sub-AVAs) of the 46,100 km2 Columbia Valley AVA. Although legally distinct, the Columbia Basin AVAs are generally similar with regard to climate, landscape, and soils, the principle components of physical terroir.

To test whether the AVAs of the Columbia Basin are distinguishable based on the chemical properties of their soils, 53 samples were collected from vineyards considered to be representative within their respective AVAs. Sampled locations within each vineyard were selected as typical based on the advice of resident viticulturalists. Vineyard soils from the Willamette Valley and Snake River Valley, which are other major viticultural regions of the Pacific Northwest, were also sampled for comparison.

Soils were sampled from a depth of 50-75 cm and analyzed for bulk chemistry and plant-available nutrients. The analyses revealed that, of the 10 AVAs, only the Columbia Gorge, Walla Walla Valley, and Lake Chelan AVAs have distinct differences that could be attributed to variations in climate and parent material. Columbia Basin soils could be readily distinguished from vineyard soils of the Willamette Valley and Snake River Valley based on compositional differences that result primarily from variations in soil parent material and climate-controlled rates of weathering.


Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article



Department of Geology, Whitman College, 345 Boyer Ave., Walla Walla, WA 99362 USA

Contact the author


Columbia Basin, Columbia Valley, soil, chemistry, Pacific Northwest.


IVES Conference Series | Terroir 2012


Related articles…

Recent advancements in understanding the terroir effect on aromas in grapes and wines

Terroir is about the link between wine and its origin. It has long been understood by sensory evaluation that the taste of wine from a given variety can be related to its origins. Specific organoleptic characteristics of wine are influenced by environmental factors such as soil and climate. By deconstructing the effect of measurable soil and climate parameters on grape and wine aroma compounds,

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality.

Combined use of leaf removal and natural shading to delay grape ripening in Manto negro (Vitis vinifera L.) under deficit irrigation 

The increasingly frequent heat waves during grape ripening pose challenges for premium wine grape production. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality.

The soil biodiversity as a support to environmental sustainability in vineyard

The environmental biodiversity is important to guarantee essential services to the living communities, its richness is a symptom of a minor disturbance and improves he environment biological quality.


Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.