Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Uve e vini in vulcaniti basiche anorogeniche dei lessini meridionali, impronta petrochimica e assimilazione di metalli pesanti

Uve e vini in vulcaniti basiche anorogeniche dei lessini meridionali, impronta petrochimica e assimilazione di metalli pesanti

Abstract

[English version below]

Nel 2009 sono stati prelevati e analizzati mediante XRF (X-ray fluorescence) campioni di suolo, in vigneti sperimentali siti nelle province di Vicenza e di Ancona. Sono stati inoltre determinati in 2 campioni di mosto e 2 di vino delle varietà Verdicchio e Refosco dal peduncolo rosso, ed in 2 di uva Refosco dal peduncolo rosso, gli elementi in traccia mediante ICP-MS (Inductively coupled plasma-mass spectrometry). Lo studio ha consentito di definire la qualità di uva e vini, i rapporti caratteristici per ogni tipologia di suolo, e caratterizzare l’impronta geochimica in un ampio areale in cui le modeste differenze climatiche non influiscono sulle dinamiche di assimilazione. Sono state definite le relazioni fra matrice suolo e vino attraverso il confronto fra le concentrazioni dei metalli analizzati nelle varie matrici e varietà di uva.

In 2009, 18 samples of soils, coming from experimental vineyards in Vicenza and Ancona, were collected and analysed using XRF technique, to characterize major and minor element concentration. Moreover, 2 samples of must, 2 samples of wine (one of each varieties Verdicchio and Refosco dal peduncolo rosso) and 2 samples of grapes Refosco dal peduncolo rosso, were investigated using ICP-MS (Inductively coupled plasma-mass spectrometry) technique in order to define their trace elements concentrations. The aim of this study has been not only to characterize the quality of the grapes and the wines, but also to define the typical ratios between these two variable for each soils, and to outline geochemical fingerprints in a wide area where climatic differences have limited influence on the assimilation processes. The comparison of heavy metals concentrations between the several matrix and the varieties of grapes allow to define the relationship between soil matrix and wine.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

D. G. Ferioli (1), P. Bartolomei (2), M. Esposito (1), E. Marrocchino (3), L. Sansone (4), M. Borgo (4),
N. Belfiore (4), D. Tomasi (4), R. Tassinari (3), C. Vaccaro (3), M. Niero (4), P. Biondini (5)

(1) U-SERIES, Via Ferrarese, 131, 40128 Bologna, Italy
(2) ENEA, via dei Colli, 16; 40136 Bologna, Italy
(3) Dipartimento di Scienze della Terra, Università di Ferrara, Via Saragat 1, 44100 Ferrara, Italy
(4) CRA-Centro di Ricerca per la Viticoltura, Viale XXVIII Aprile, 26 31015 Conegliano (TV), Italy
(5) Delegazione Pontificia per il Santuario della Santa Casa di Loreto, Piazza della Madonna, 1 60025 Loreto (AN), Italy

Contact the author

Keywords

Uva, vino, suolo, impronta geochimica
Grape, wine, soil, geochemical fingerprints

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Comprehensive exploration of wine aroma-related compounds as promoted by alternative vinification procedures in case of Zelen (Vitis vinifera L.) grapes processing

Not only vintner’s decisions in the vineyard, but also winemaker’s choices of technology approaches in the cellar play a significant role in the final wine style and quality. Whereas traditional technologies within chosen terroir are quite well explored and thus somehow predictable, there is no proper knowledge available on possible outcomes in case of implementing novel, alternative winemaking strategies. To reveal their effects on wine aroma compounds and sensory characteristics, two alternative strategies (cryoextraction or addition of whole grape berries during last stages of fermentation) were compared to classical Vipava valley winemaking approach as normally used for an autochthonous variety Zelen. After separate vinification and bottling, all the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS and were then also sensorialy evaluated by pre-trained panel.

Aromas of Riesling wine: impact of bottling and storage conditions

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace.

Assessment of the bottled storage conditions on the volatile composition and sensorial characteristics of white wines

The quality of bottled white wines is highly influenced by their storage conditions, mainly temperature, and exposure to light and oxygen (1, 2).

Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

New pathogen resistant varieties allow an efficient and greatly reduced use of fungicides. These new varieties promise, therefore, an enormous potential to reach the European Green Deal aim of a 50% reduction of pesticides in EU agriculture by 2030.

Microbial consortia as a tool for sustainable vineyard management: A study on their acceptance among Veneto region’s grape-growers

In recent years, sustainability has become a key focus in agriculture, including viticulture.