Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Uve e vini in vulcaniti basiche anorogeniche dei lessini meridionali, impronta petrochimica e assimilazione di metalli pesanti

Uve e vini in vulcaniti basiche anorogeniche dei lessini meridionali, impronta petrochimica e assimilazione di metalli pesanti

Abstract

[English version below]

Nel 2009 sono stati prelevati e analizzati mediante XRF (X-ray fluorescence) campioni di suolo, in vigneti sperimentali siti nelle province di Vicenza e di Ancona. Sono stati inoltre determinati in 2 campioni di mosto e 2 di vino delle varietà Verdicchio e Refosco dal peduncolo rosso, ed in 2 di uva Refosco dal peduncolo rosso, gli elementi in traccia mediante ICP-MS (Inductively coupled plasma-mass spectrometry). Lo studio ha consentito di definire la qualità di uva e vini, i rapporti caratteristici per ogni tipologia di suolo, e caratterizzare l’impronta geochimica in un ampio areale in cui le modeste differenze climatiche non influiscono sulle dinamiche di assimilazione. Sono state definite le relazioni fra matrice suolo e vino attraverso il confronto fra le concentrazioni dei metalli analizzati nelle varie matrici e varietà di uva.

In 2009, 18 samples of soils, coming from experimental vineyards in Vicenza and Ancona, were collected and analysed using XRF technique, to characterize major and minor element concentration. Moreover, 2 samples of must, 2 samples of wine (one of each varieties Verdicchio and Refosco dal peduncolo rosso) and 2 samples of grapes Refosco dal peduncolo rosso, were investigated using ICP-MS (Inductively coupled plasma-mass spectrometry) technique in order to define their trace elements concentrations. The aim of this study has been not only to characterize the quality of the grapes and the wines, but also to define the typical ratios between these two variable for each soils, and to outline geochemical fingerprints in a wide area where climatic differences have limited influence on the assimilation processes. The comparison of heavy metals concentrations between the several matrix and the varieties of grapes allow to define the relationship between soil matrix and wine.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

D. G. Ferioli (1), P. Bartolomei (2), M. Esposito (1), E. Marrocchino (3), L. Sansone (4), M. Borgo (4),
N. Belfiore (4), D. Tomasi (4), R. Tassinari (3), C. Vaccaro (3), M. Niero (4), P. Biondini (5)

(1) U-SERIES, Via Ferrarese, 131, 40128 Bologna, Italy
(2) ENEA, via dei Colli, 16; 40136 Bologna, Italy
(3) Dipartimento di Scienze della Terra, Università di Ferrara, Via Saragat 1, 44100 Ferrara, Italy
(4) CRA-Centro di Ricerca per la Viticoltura, Viale XXVIII Aprile, 26 31015 Conegliano (TV), Italy
(5) Delegazione Pontificia per il Santuario della Santa Casa di Loreto, Piazza della Madonna, 1 60025 Loreto (AN), Italy

Contact the author

Keywords

Uva, vino, suolo, impronta geochimica
Grape, wine, soil, geochemical fingerprints

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

Denial of the wine-growing landscape

The aim of this presentation is to analysis the impact of the viticultural landscape in communication on labels of wine produced in heroic viticulture areas. To verify whether the ”viticultural landscape

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).

Exploring changes in browning kinetics, color, and antioxidants due to dealcoholization of wine

The global consumer demand for low or non-alcoholic wine is growing steadily in recent years, driven by health concerns, religious beliefs, and personal taste preferences etc.. Consequently, the removal of alcohol from wine can significantly alter its chemical and sensory properties, including color, aroma, and taste, which make a significant challenge for consumer to accept these products. Ethanol plays a crucial role in various chemical reactions and interactions that contribute to the development of wine’s characteristics.