Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Application of organic carbon status indicators on vineyard soils: the case study of DOC Piave (Veneto region, Italy)

Application of organic carbon status indicators on vineyard soils: the case study of DOC Piave (Veneto region, Italy)

Abstract

According to the Kyoto Protocol objectives, it’s necessary to identify alternative carbon dioxide sinks, and vineyard soils could be a significant opportunity. A set of soil organic carbon status indicators, proposed by JRC (Stolbovoy, 2006), was tested on vineyard soils of DOC Piave area (Veneto region) to validate it. Information available in the regional soil database for the study area (Soil Maps of Treviso and Venice provinces at 1:50,000 scale with 614 soil profiles on about 150,000 ha, 5% of which with vineyards) was analysed to point out significant relationships between soil organic carbon content, soil type and land uses. An approach for functional soil groups was adopted: the soil typological units were grouped on the basis of texture, coarse fragments, drainage and physiography (Manni, 2007). The highest value, which differs statistically from the others, was observed in fine texture and poorly drained soils. Furthermore, vineyard soils showed higher content than crop soils, especially on the first 30 cm. But no significant differences were observed. Then, for each functional group and separately for vineyard and crop topsoil and subsoil, a set of soil organic carbon status indicators were defined. The results showed higher capacity to sequestrate carbon on vineyard topsoil. The present study allows an overview of the DOC Piave area carbon pool and highlights priorities areas where policy interventions should be concentrated.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

G. Manni (1), G. Concheri (1), A. Garlato (2), I. Vinci (2), P. Marcuzzo (3)

(1) Università degli Studi di Padova – Dipartimento di Biotecnologie Agrarie
Viale dell’Università 16, 35020 Legnaro (PD), Italia
(2) ARPAV – Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto – Servizio Suoli
Via Santa Barbara 5/a, 31100 Treviso, Italia
(3) Centro di Ricerca per l’Agricoltura-Viticoltura
Via XXVIII Aprile 26, Conegliano (TV), Italia

Contact the author

Keywords

Soil organic carbon, sequestration, vineyard, indicator, functional group

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines.

Effet terroir et arômes des muscats

L’étude porte sur trois terroirs du Roussillon, classés dans l’A.O.C. Muscat de Rivesaltes et concerne les 2 cépages de cette appellation : le muscat à petits grains et le muscat d’Alexandrie. Elle a pour objectif de connaître pour un terroir donné le meilleur choix de cépage.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.