Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Application of organic carbon status indicators on vineyard soils: the case study of DOC Piave (Veneto region, Italy)

Application of organic carbon status indicators on vineyard soils: the case study of DOC Piave (Veneto region, Italy)

Abstract

According to the Kyoto Protocol objectives, it’s necessary to identify alternative carbon dioxide sinks, and vineyard soils could be a significant opportunity. A set of soil organic carbon status indicators, proposed by JRC (Stolbovoy, 2006), was tested on vineyard soils of DOC Piave area (Veneto region) to validate it. Information available in the regional soil database for the study area (Soil Maps of Treviso and Venice provinces at 1:50,000 scale with 614 soil profiles on about 150,000 ha, 5% of which with vineyards) was analysed to point out significant relationships between soil organic carbon content, soil type and land uses. An approach for functional soil groups was adopted: the soil typological units were grouped on the basis of texture, coarse fragments, drainage and physiography (Manni, 2007). The highest value, which differs statistically from the others, was observed in fine texture and poorly drained soils. Furthermore, vineyard soils showed higher content than crop soils, especially on the first 30 cm. But no significant differences were observed. Then, for each functional group and separately for vineyard and crop topsoil and subsoil, a set of soil organic carbon status indicators were defined. The results showed higher capacity to sequestrate carbon on vineyard topsoil. The present study allows an overview of the DOC Piave area carbon pool and highlights priorities areas where policy interventions should be concentrated.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

G. Manni (1), G. Concheri (1), A. Garlato (2), I. Vinci (2), P. Marcuzzo (3)

(1) Università degli Studi di Padova – Dipartimento di Biotecnologie Agrarie
Viale dell’Università 16, 35020 Legnaro (PD), Italia
(2) ARPAV – Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto – Servizio Suoli
Via Santa Barbara 5/a, 31100 Treviso, Italia
(3) Centro di Ricerca per l’Agricoltura-Viticoltura
Via XXVIII Aprile 26, Conegliano (TV), Italia

Contact the author

Keywords

Soil organic carbon, sequestration, vineyard, indicator, functional group

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Increasing the capacity of change and adaptation of agri-food chain: the Agri-food CHIP project

The increasing vulnerability of food systems is a pressing challenge amplified by global interconnectedness.

Effects of organic mulches on the soil environment and yield of grapevine

Farming management practices aiming at conserving soil moisture have been developed in arid and semiarid-areas facing water scarcity problems. Organic mulching is an effective method to manipulate the crop-growing microclimate increasing crop yield by controlling soil temperature, and retaining soil moisture by reducing soil evaporation. In this sense, the effectiveness of different organic mulching materials (straw mulch and grapevine pruning debris) applied within the row of a vineyard was evaluated on the soil and on the vine in a Tempranillo vineyard located in La Rioja (Spain). Organic mulches were compared with a traditional bare soil management technique (based on the use of herbicides to avoid weed incidence). Mulching coverages favourably influenced the soil water retention throughout all the grapevine vegetative cycle. However, the soil-moisture variation was not the same under different mulching materials, being the straw mulch (SM) the one that retained more water in comparison with grapevine pruning debris (GPD) based-cover. The changes of soil moisture in the upper surface layer (0–10 cm) were highly dynamic, probably due to water vapour fluxes across the soil-atmospheric interface. However, both, SM and GPD reduced these fluctuations as compared with bare soils. A similar trend occurred with soil temperature. Both organic mulches altered soil temperature in comparison with bare soil by reducing soil temperature in summer and raising it in winter. Moreover, the same buffering effect for the temperature on the covered soil also remains in the deeper layers. To conclude, we could see that organic mulching had a positive impact on soil-moisture storage and soil temperature and the extent of this effect depends on the type of mulching materials. These changes led to higher rates of photosynthesis and stomatal conductivity compared to bare soils, also favouring crop growth and grape yields.

Relationships between vine isohydricity and changes of fruit growth and metabolism during water deficit

The frequency of water deficits is increasing in many grape-growing regions due to climate change.

How to make a mineral wine? Producers’ representations vs. scientific data

In this video recording of the IVES science meeting 2023, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, Dijon, France) speaks on how to make a mineral wine, producers’ representations vs. scientific data. This presentation is based on an original article accessible for free on OENO One.

Volatile compounds production during ripening of cv. “Sangiovese” grapes from different terroir

“Sangiovese” (Vitis vinifera L. sativa cv. Sangiovese) is the main grape variety to be established in Italy, being the only country in Europe where this grape is commonly found.