Terroir 2010 banner
IVES 9 IVES Conference Series 9 Zonazione e vitigni autoctoni nel sud della Basilicata: metodologie integrate per la caratterizzazione di ambienti di elezione di biotipi storici finalizzati a vini di territorio nella DOC “Terre dell’Alta Val d’Agri”

Zonazione e vitigni autoctoni nel sud della Basilicata: metodologie integrate per la caratterizzazione di ambienti di elezione di biotipi storici finalizzati a vini di territorio nella DOC “Terre dell’Alta Val d’Agri”

Abstract

[English version below]

I territori della DOC “Terre dell’Alta Val d’Agri”, a Sud della regione Basilicata, si caratterizzano per una elevata biodiversità autoctona autoselezionatesi su ambienti ecologicamente ben definiti, ed una storica tradizione viticola basata sulla coltivazione di alcuni di questi vitigni minori con peculiari caratteristiche enologiche.
Al fine di dare continuità ad una serie di azioni di ricerca volte a riqualificare il comparto viti-vinicolo della regione, è stata formulata una metodologia integrata per la valorizzazione congiunta di questi ambienti di coltivazione e dei biotipi su di essi selezionatosi.
Il progetto di ricerca si pone come obiettivo di evidenziare sia i fattori fisici e ambientali che qui hanno influenzato la selezione della vite, mediante applicazione di metodologie di analisi territoriale modificate a fini viticoli, sia le principali caratteristiche di questi biotipi.
Infatti i vitigni autoctoni storici e/o minori, rappresentano realtà viticole spesso marginali e pertanto a rischio di abbandono. La loro salvaguardia va oltre il significato della conservazione di una biodiversità a rischio di erosione e si identifica, invece, con la necessità di tutelare l’esistenza di sistemi produttivi complessi e tradizionali che si concretizzano in sistemi polifunzionali e con valenza culturale (Cirigliano P. et al,. 2007).
In conclusione, i risultati ottenuti con la metodologia adottata si pongono come possibile percorso di ricerca che integra la valorizzazione e conservazione dell’identità specifica di un territorio viticolo – zonazione viticola – con la salvaguardia della biodiversità autoctona ivi presente, rispetto a principi di sostenibilità ambientale dei modelli produttivi.

The territories of DOC “Terre dell’Alta Val d’Agri”, in the South of Basilicata region, are characterized by an high native biodiversity autoselected on environments ecologically well defined, and a historic wine tradition based on the farming of some of these minor vines with peculiar oenological characteristics. To continue the research activities that have the aim to qualify the viticultural area of the region, an integrated methodology has been formulated to improve the farming of these environments and of the biotypes selected on them. The research project has the aim to highlight both physical and environmental factors that here had influenced the grape-vine selection, through the application of territorial analysis methodologies modified for wine aims, and also to highlight the main characteristics of these biotypes. In fact the not “so big” native grape-vine fields (Cargnello G., 2006) often represent marginal realities and so they risk to be abandoned. Their safeguard go beyond the preservation of a biodiversity that risks to be eroded, that’s way it’s necessary to protect the existence of traditional and complex productive systems that can actually be considered multipurpose systems with cultural value (Barbera e Cullotta, 2007; Biasi e Botti, 2007; Larcher e Devecchi, 2007).
In conclusion the results obtained with this methodology can be considered a possible research course which integrate the valorisation and preservation of the specific identity of a grape vine field – grape vine zoning – with the safeguard of native biodiversity where it is present, regarding the principles of environmental sustainability of productive models.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

P. Cirigliano (1), A. R. Caputo A (2), F. P. Camacho (3)

(1) Consiglio per la Ricerca e la sperimentazione in Agricoltura – Unità di Ricerca per la Viticoltura di Arezzo, Via Romea 53; 52100 Pratantico (Arezzo), Italy
(2) CRA – Unità di Ricerca per la l’Uva da Tavola e la Vitivinicoltura in ambiente mediterraneo, Via Casamassima 148; 70010 Turi (Bari), Italy
(3) Universidad De Cordoba (ES) – Departamento de Agronomia, Campus de Rabanales Ctra Madrid Km 396.14071 – Cordoba, Spain

Contact the author

Keywords

Zonazione, ambienti, biodiversità viticola, tradizione
Zoning, Environment, vine biodiversity, vine tradition

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Amino nitrogen content in grapes: the impact of crop limitation

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature
especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and
iii) identifying the impact of temperature on grape berry attributes.

Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Alcoholic fermentation conducted by microorganism is a key step in the production of wine. In this process, interactions between different species of yeast are widely described but their mechanisms are still poorly understood. The interactions studied in wine are mainly between Saccharomyces and non-Saccharomyces species. Therefore, little is known about the mechanisms of interactions