Terroir 2010 banner
IVES 9 IVES Conference Series 9 Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Abstract

Ribeira Sacra is a Spanish Denominación de Origen (D.O.) for wines, located in Galicia, NW Spain. The vineyards are planted on the valleys of the rivers Miño and Sil. The area is divided into five sub-zones with different edaphoclimatic characteristics: Chantada, Amandi Ribeiras do Miño, Ribeiras do Sil-Ourense and Quiroga-Bibei.
The wines from D.O. Ribeira Sacra are typically young red wines produced with Mencía grape variety. During eight years (2002-2009) we have analyzed the chemical parameters that determine the quality of the grape during the ripening process of Mencía grape in the different subzones. The results showed the influence of terroir on the Mencía grapes composition.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

I. Rodríguez (1), J. Queijeiro (1), Soto B. (2), A. Masa (3), M. Vilanova (3)

(1) Sciences Department, Vigo University, As Lagos s/n 32004, Ourense (Spain)
(2) Denomination of Origin Ribeira Sacra, Monforte de Lemos, Ourense (Spain)
(3) Misión Biológica de Galicia-CSIC, PO BOX 28, Pontevedra (Spain)

Contact the author

Keywords

ripening, mencía, Ribeira Sacra, Spain

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Climate change constitutes an enormous challenge for humankind and for all human activities, viticulture not being an exception. Long-term strategic changes are probably needed the most, but growers also need to deal with short-term changes: summers that are getting progressively warmer, earlier harvest dates and higher pH in musts and wines. In the last 10-15 years, a relevant corpus of research is being developed worldwide in order to evaluate to which extent extreme canopy management operations, aimed at reducing leaf area and, thus, limiting the source to sink ratio, could be useful to delay ripening. Although extreme canopy management can result in relevant delays in harvest dates, longer term studies, as well as detailed analysis of their implications on carbohydrate reserves, bud fertility and future yield are desirable before these practices can be recommended.

Development of a strategy for measuring fruity aroma potential in red wine

Levels of esters derived from substituted acids increase during the first years of aging and some of them are strongly involved in red wine fruity aromatic expression.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

The socioclimatic dynamics and the table grape production during a long-drought: the case of Brazilian semiarid

In 2022, the area cultivated with grapes in Brazil counted 75 thousand ha. About 1/2 of the grape production is located in rio grande do sul state, in South Brazil. Nonetheless, the northeast region, especially the Sao Francisco River Valley (SFRV), is increasing its area and production, mainly pushed by table grapes. The states of bahia and pernambuco already respond for circa 1/3 of brazilian grape production.

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.