Terroir 2010 banner
IVES 9 IVES Conference Series 9 Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Abstract

Ribeira Sacra is a Spanish Denominación de Origen (D.O.) for wines, located in Galicia, NW Spain. The vineyards are planted on the valleys of the rivers Miño and Sil. The area is divided into five sub-zones with different edaphoclimatic characteristics: Chantada, Amandi Ribeiras do Miño, Ribeiras do Sil-Ourense and Quiroga-Bibei.
The wines from D.O. Ribeira Sacra are typically young red wines produced with Mencía grape variety. During eight years (2002-2009) we have analyzed the chemical parameters that determine the quality of the grape during the ripening process of Mencía grape in the different subzones. The results showed the influence of terroir on the Mencía grapes composition.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

I. Rodríguez (1), J. Queijeiro (1), Soto B. (2), A. Masa (3), M. Vilanova (3)

(1) Sciences Department, Vigo University, As Lagos s/n 32004, Ourense (Spain)
(2) Denomination of Origin Ribeira Sacra, Monforte de Lemos, Ourense (Spain)
(3) Misión Biológica de Galicia-CSIC, PO BOX 28, Pontevedra (Spain)

Contact the author

Keywords

ripening, mencía, Ribeira Sacra, Spain

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

From the “climats de Bourgogne” to the terroir in bottles

From a chemical composition point of view, wine is the result of complex interplays between environmental, genetic and human factors. The notion of terroir in viticulture involves the vine and its environment, including phenology, geography, geology, pedology and local climate of a vineyard, along with human inputs.

Can wine competition awarded points be correlated with wine chromatic and aromatic composition?

The quality of wine is difficult to define. This is most certainly accredited to everyone´s different perception of quality. Some of the indicators of high-quality wines are complexity, balance, color and intensity. Color is one of the most crucial attributes of quality, not only for the obvious implications for their perception but also because they are indicators of other aspects related to its aroma and taste. Phenolic compounds are the main responsible for wine color, being anthocyanin and tannins the most determinant compounds in red wines. In addition to color, wine aroma is another important attribute linked with quality and consumer preferences.

Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Volatile organic compounds (VOCs) are very important for the characterisation and quality of the final white wine. An oenological practice to increase the extraction of aroma compounds is the cold pre-fermentative maceration [1,2], although it may also release phenolic compounds that confer darker chromatic traits to white wines, not appreciated by consumers. This practice could be improved by the use of enzymes in order to facilitate the release of the odorous molecules. In this study, the effect of different enzyme treatments during skin contact on the chromatic characteristics and volatile composition of white musts from four winegrape varieties was evaluated.

Aroma profile of ‘Pedro Ximenez’ sweet musts obtained from dried grapes by different methods

Aroma fraction of musts from grapes ‘Pedro Ximenez’ traditionally sun-dried and chamber-dried at 40 ºC and at 50 ºC during 8, 5 and 4 days respectively, destined for the production of sweet wines in Montilla-Moriles region (southern Spain) was studied.

Better understand the soil wet bulb formation with subsurface or aerial drip irrigation in viticulture

The gradual change in rainfall patterns experienced in the south of France vineyards, especially around the Mediterranean sea, means that the vines are increasingly subject to summer drought. The winegrowers developped the use of irrigation techniques to ensure the maintenance of competitive yields in the production of wines under Protected Geographical Indication label. In practice, drip irrigation pipes can be installed above the ground or buried into the soil as well as at different distances from the vine row. The objective of this study was to examine the profiles of the wet bulbs of the soil obtained from two drip irrigation systems : aerial drip located under the vine row and subsurface drip placed in the middle of the inter-row. This experiment took place over two consecutive seasons (2020-2021) on a 3.4 ha Viognier plot in the Mediterranean region (PGI Oc, France) on sandy clay soil. The annual rainfalls were less than 400 mm. Soil water content probes were installed at different depths (20 – 40 – 60 – 80 cm) and at different lateralities from the vine row (30 – 60 – 90 – 120 cm) to control the formation of the soil wet bulb during irrigation. The mapping and the analysis of the data allowed a better understanding and differentiation of the water percolation when irrigating with subsurface or aerial drip. For the same amount of water and without differences of vine water status, it is shown that in a subsurface drip irrigation situation, the size of the wet bulb formed is larger than in aerial drip irrigation system.