Terroir 2010 banner
IVES 9 IVES Conference Series 9 Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Abstract

Ribeira Sacra is a Spanish Denominación de Origen (D.O.) for wines, located in Galicia, NW Spain. The vineyards are planted on the valleys of the rivers Miño and Sil. The area is divided into five sub-zones with different edaphoclimatic characteristics: Chantada, Amandi Ribeiras do Miño, Ribeiras do Sil-Ourense and Quiroga-Bibei.
The wines from D.O. Ribeira Sacra are typically young red wines produced with Mencía grape variety. During eight years (2002-2009) we have analyzed the chemical parameters that determine the quality of the grape during the ripening process of Mencía grape in the different subzones. The results showed the influence of terroir on the Mencía grapes composition.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

I. Rodríguez (1), J. Queijeiro (1), Soto B. (2), A. Masa (3), M. Vilanova (3)

(1) Sciences Department, Vigo University, As Lagos s/n 32004, Ourense (Spain)
(2) Denomination of Origin Ribeira Sacra, Monforte de Lemos, Ourense (Spain)
(3) Misión Biológica de Galicia-CSIC, PO BOX 28, Pontevedra (Spain)

Contact the author

Keywords

ripening, mencía, Ribeira Sacra, Spain

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Cartographie des terroirs viticoles: valorisation des résultats par un logiciel de consultation dynamique de cartes

Pour son travail de cartographie et de caractérisation des terroirs, la Cellule Terroirs Viticoles utilise la méthode développée par l’Unité Vigne et Vin du Centre INRA d’Angers. Cette méthode reconnue au niveau international est appliquée dans les vignobles du Val de Loire à l’échelle du 1/10 000e et est valorisée par des éditions d’Atlas Viticoles à destination des viticulteurs et des organismes techniques.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.

Saccharomyces cerevisiae – Oenococcus oeni – Lactiplantibacillus plantarum: focus on malolactic fermentation during production of Catarratto and Riesling white wines

The increasing interest in enhancing groundbreaking sensory profile of wines determined the need to select novel strains of lactic acid bacteria (LAB). Metabolic processes characterizing malolactic fermentation (MLF) lead to the production of several organic compounds that significantly impact the oenological and sensory characteristics of wines.

Definition and planning of viticultural landscapes case study in the “Côtes du Rhône Gardoises”

Les préoccupations actuelles autour des paysages viticoles vont au-delà des clichés promotionnels développés par les stratégies marketing. En effet, les paysages sont aujourd’hui au cœur d’une demande sociale croissante qui se traduit par différentes lois (la loi paysage de 1993, le paysage reconnu comme patrimoine commun de la nation par la loi n°95-101, la création du Conseil national du paysage par arrêté du 8/12/2000).

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.