Terroir 2010 banner
IVES 9 IVES Conference Series 9 Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Abstract

Ribeira Sacra is a Spanish Denominación de Origen (D.O.) for wines, located in Galicia, NW Spain. The vineyards are planted on the valleys of the rivers Miño and Sil. The area is divided into five sub-zones with different edaphoclimatic characteristics: Chantada, Amandi Ribeiras do Miño, Ribeiras do Sil-Ourense and Quiroga-Bibei.
The wines from D.O. Ribeira Sacra are typically young red wines produced with Mencía grape variety. During eight years (2002-2009) we have analyzed the chemical parameters that determine the quality of the grape during the ripening process of Mencía grape in the different subzones. The results showed the influence of terroir on the Mencía grapes composition.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

I. Rodríguez (1), J. Queijeiro (1), Soto B. (2), A. Masa (3), M. Vilanova (3)

(1) Sciences Department, Vigo University, As Lagos s/n 32004, Ourense (Spain)
(2) Denomination of Origin Ribeira Sacra, Monforte de Lemos, Ourense (Spain)
(3) Misión Biológica de Galicia-CSIC, PO BOX 28, Pontevedra (Spain)

Contact the author

Keywords

ripening, mencía, Ribeira Sacra, Spain

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

Mannoproteins from oenological by-products as tartaric stabilization and color agents in white and red wines

Climate change is drastically modifying grape composition and wine quality. As consequence, must and wines are becoming unbalanced, with high sugar concentration, increased alcohol content, lower acidity, excessive astringency, color instability and also a rise in the incidence of tartaric instability is being showed.

Using Landsat LST data to predict vineyard productivity anomalies: A case study in the Euganean Hills wine region, Italy

In the current scenario of climatic variability, even though the vine (Vitis vinifera) is a species generally considered very fertile, the process of bud differentiation is particularly influenced by the weather trend not only of the current year but also of the previous one.

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.