Terroir 2010 banner
IVES 9 IVES Conference Series 9 Il sistema vigneto del Lago di Bolsena: caratterizzazione della produzione di Cannaiola di Marta

Il sistema vigneto del Lago di Bolsena: caratterizzazione della produzione di Cannaiola di Marta

Abstract

[English version below]

Il comprensorio del Lago di Bolsena (VT) è un territorio ad elevata vocazione vitivinicola in cui il paesaggio della vite storicamente persiste e caratterizza la fisionomia dei luoghi. Qui gli agroecosistemi viticoli possiedono una valenza ecologico-ambientale, storico-culturale ed economica di rilievo. La ricerca condotta ha previsto la caratterizzazione della tipologia delle produzioni e degli ambienti di coltivazione di diversi vitigni locali, in particolare il vitigno autoctono Cannaiola di Marta, con l’obiettivo di salvaguardarne il valore biologico, valutarne la qualità in funzione dei microambienti di coltivazione e il ruolo nella definizione della fisionomia del paesaggio. Mediante indagine cartografica è stata condotta un’analisi diacronica a scala territoriale per evidenziare il ruolo dei vigneti nell’uso del suolo e nella definizione dell’ecomosaico ambientale. In vigneti rappresentativi dell’eterogeneità degli ambienti di coltivazione, il vitigno autoctono Cannaiola di Marta è stato caratterizzato con indagine ampelografia rispetto alla varietà certificata Canaiolo nero. La qualità della produzione è stata rapportata alla tipologia di suolo e alla variabilità fisiografica. Uno studio dell’architettura dei vigneti ha completato l’analisi dei modelli viticoli. I risultati ottenuti hanno evidenziato l’unicità della produzione della Cannaiola di Marta e la particolarità degli ambienti di coltivazione per una qualità superiore. E’ emerso il carattere di vulnerabilità di questa produzione dovuta alla frammentarietà dei vigneti, a fronte di un elevato valore storico-culturale degli impianti. Il sistema vigneto della Cannaiola di Marta si inserisce armonicamente in un ecosistema prezioso per la salvaguardia delle risorse ambientali e paesaggistiche di un territorio fra i più suggestivi del Lazio.

The northern part of the Lazio region, i.e. the area around the Lake of Bolsena, is highly vacated to grapevine production. Since the past, rural landscape has been characterized by vineyards, that represent still today a distinctive trait of this territory. Here vineyards exhibit economical, but also ecological, historical, biological and social functions. Nonetheless, vineyard surface is decreasing dramatically, with evident loss in biodiversity and landscape diversity. The study was carried out in order to characterized through a systemic approach the production of the local variety Cannaiola di Marta and its territorial contest. In order to preserve this production and the related landscape, the germplasm unicity was evaluated, the grape quality was tested in the highly differing physical environments, and the physionomy of the vineyards, as well as that of the rural landscape, was measured through cartographic elaboration. The research has proved that the investigated area is suitable for high quality and unique productions. It is also possible to attribute to these vulnerable vineyards a cultural significance, based on the employment of historic germplasm, on traditional vineyard traits and cultural practices. The viticulture of this territory is included in a equilibrated ecosystem, in which vineyards might preserve the environmental resources of one of the most agreeable territory of the Lazio region.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

R. Biasi, E. Brunori, I. Ceccariglia, F. Botti

Dipartimento di Produzione Vegetale, Università degli Studi della Tuscia Via S. Camillo De Lellis, snc – 01100 Viterbo, Italia

Contact the author

Keywords

ecologia del paesaggio, multifunzionalità, paesaggio agrario tradizionale, vitigni autoctoni, zonazione
landscape ecology, local variety, multifunctionality, tradizional vineyards, zonation

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

The effect of water stress deficit on ‘Xynisteri’ grapes through systems biology approaches

Cyprus is one of the very few phyloxera-free areas worldwide where the vast majority of vines are own-rooted and non-irrigated. ‘Xynisteri’ is a predominant indigenous cultivar, particularly amenable to extreme conditions such as drought and hot climate, thus rendering it appropriate for marginal soils and adverse climatic conditions. In the current work, a comparative study between irrigated (irrigation initiated at BBCH 71) and non-irrigated vines was conducted.

Impact of yeast derivatives to increase the phenolic maturity and aroma intensity of wine

Using viticultural and enological techniques to increase aromatics in white wine is a prized yet challenging technique for commercial wine producers. Equally difficult are challenges encountered in hastening phenolic maturity and thereby increasing color intensity in red wines. The ability to alter organoleptic and visual properties of wines plays a decisive role in vintages in which grapes are not able to reach full maturity, which is seen increasingly more often as a result of climate change. A new, yeast-based product on the viticultural market may give the opportunity to increase sensory properties of finished wines. Manufacturer packaging claims these yeast derivatives intensify wine aromas of white grape varieties, as well as improve phenolic ripeness of red varieties, but the effects of this application have been little researched until now. The current study applied the yeast derivative, according to the manufacture’s instructions, to the leaves of both neutral and aromatic white wine varieties, as well as on structured red wine varieties. Chemical parameters and volatile aromatics were analyzed in grape musts and finished wines, and all wines were subjected to sensory analysis by a tasting panel. Collective results of all analyses showed that the application of the yeast derivative in the vineyard showed no effect across all varieties examined, and did not intensify white wine aromatics, nor improve phenolic ripeness and color intensity in red wine.

Better understanding on the fungal chitosan and derivatives antiseptic effect on Brettanomyces bruxellensis in wine.

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011).

Tomatoes and Grapes: berry fruits with a (bright) biotech future?

Tomatoes and Grapes are berries that are genetically related and therefore at least partially their developmental pathways leading to a fleshy fruit should share some of the components. In a sense knowledge obtained from the model plant tomato could be useful for grape and conversely the more amenable tomato can be used to test some hypothesis that would be difficult to obtain in grape. Research in my lab and other labs have led to a better understanding of the molecular genetics mechanisms underlying fruit development and ripening in tomato and more specifically those related to metabolite accumulation that may lead to changes in fruit nutritional and flavor composition. This research has involved the use of genetic variability in natural population, but also biparental population and genetically engineered lines that are easy to develop in tomato tomato but not in grape. NGTs also can be easily implemented in tomato to not only speed up the gene-to-trait but also develop new tomato varieties.

Evolution of the amino acids content through grape ripening: Effect of foliar application of methyl jasmonate with or without urea

The parameters that determine the grape quality, and therefore the optimal harvest time, suffer variations during berry ripening, related to climate change, with the widely known problem of the gap between technological and phenolic maturities. However, there are few studies about its incidence on grape nitrogen composition. For this reason, the use of an elicitor, methyl jasmonate (MeJ), alone or with urea, is proposed as a tool to reduce climatic decoupling, allowing to establish the harvest time in order to achieve the optimum grape quality. The aim was to study the effect of MeJ and MeJ+Urea foliar applications on the evolution of Tempranillo amino acids content throughout the grape maturation. Three treatments were foliarly applied, at veraison and 7 days later: control (water), MeJ (10 mM) and MeJ+Urea (10 mM+6 kg N/ha). Grape samples were taken at five stages of maturation: day before the first and second applications, 15 days after the second application (pre-harvest), harvest day, and 15 days after harvest (post-harvest). The amino acids analysis of the samples was carried out by HPLC. Results showed that the evolution of amino acids was similar regardless of the treatment; however, foliar applications influenced the nitrogen compounds content, i.e., there was no qualitative effect but quantitative one. Most of the amino acids reached their maximum concentration in pre-harvest, being higher in grapes from the treatments than in the control. In general, no differences in grape amino acids content were observed between MeJ and MeJ+Urea treatments. Foliar applications with MeJ and MeJ+Urea enhanced the grape amino acids content, without affecting their profile, helping to optimize their quality and allowing to establish a more complete grape ripening standard. Therefore, MeJ and MeJ+Urea foliar applications can be a simple agronomic practice, which has shown promising results in order to enhance the grape quality.