Terroir 2010 banner
IVES 9 IVES Conference Series 9 What is the best soil for Sangiovese quality wine?

What is the best soil for Sangiovese quality wine?

Abstract

Sangiovese is one of the main cultivar in the Italian ampelographic outline and it occupies more than 60% of total vineyard surface in the Tuscany region. It is also well known that the environmental variability causes an important influence over the viticultural and oenological results of Sangiovese, which does not have strict genetic control over the vegetal-productive behaviour.
The aim of this work was to single out the best soil characteristics for Sangiovese quality, on the basis of the vine performance of Sangiovese (VPS). For this purpose, a matching table, considering eight viticultural parameters, was utilized. The matching table permitted to classify the selected parameters into three classes of decreasing vine performance. A set of 79 experimental plots, sited on 47 farms, were utilized during a time span varying from two to five years (1989-1992; 1993-1994; 1997-2000; 2002-2007 and 2008-2009). Two datasets were created. One considering all the invariant soil and topography characteristics of the plots. The second, storing the year-depended variables. The data were submitted to principal component analysis (PCA) to highlight those invariant and year-depended climate and pedoclimate variables which were significantly correlated with the average values of the VPS of each vineyard. Discriminant Analysis was employed to identify the most significant variables and their discriminating power on VPS.
The results highlighted that invariant site characteristics are the most discriminant at the province level, while climate and pedoclimate show their influence on VPS at more detailed scales. At the province level, VPS is significantly influenced by rock fragments, stoniness, available water capacity (AWC), and elevation. The ideal soil for Sangiovese in the province of Siena is placed between 315 and 335 m asl, has an AWC ranging from 110 and 120 mm, shows a limited surficial stoniness of about 8-10%, and it is rather skeletal (rock fragments content 12-16%).
These results can be used in land evaluation and vine zoning, in particular, for the selection of the best crus of the province, they may help the choice of land for a new vine planting, but they might be also used in pedotechnique, that is, in the creation of vineyard soils by means of earth movements.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

P. Bucelli (1), R. Barbetti (1), G. L’Abate (1), S. Pellegrini (1), P. Storchi (2), E.A.C. Costantini (1)

(1) Agricultural Research Council. Research Centre for Agrobiology and Pedology – Piazza M. D’ Azeglio, 30 – 50121 Firenze, Italy
(2) Agricultural Research Council. Research Unite for Viticulture – SOP – Via Romea 53 – 52020 Arezzo, Italy

Contact the author

Keywords

soil, climate, grape, red wine, Tuscany

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

Fermentations management: tools for the preservation of the wine specificity

Development of the indigenous microflora is not insignificant on the wine quality. S. cerevisiae indigenous strains are low tolerant to ethanol.

Perceptions of livestock integration in South African vineyards

Context and purpose of the study. Conventional viticulture relies heavily on synthetic inputs (fertilizers, pesticides), as well as mechanization to manage pests, weeds, and diseases and maximize yields.

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients.

The impact of vine pruning methods on physiological development and health condition of Vitis vinifera

This project aims on monitoring the plant development and comparison of the effects of various training systems on vine fertility and physiological processes.