Terroir 2010 banner
IVES 9 IVES Conference Series 9 What is the best soil for Sangiovese quality wine?

What is the best soil for Sangiovese quality wine?

Abstract

Sangiovese is one of the main cultivar in the Italian ampelographic outline and it occupies more than 60% of total vineyard surface in the Tuscany region. It is also well known that the environmental variability causes an important influence over the viticultural and oenological results of Sangiovese, which does not have strict genetic control over the vegetal-productive behaviour.
The aim of this work was to single out the best soil characteristics for Sangiovese quality, on the basis of the vine performance of Sangiovese (VPS). For this purpose, a matching table, considering eight viticultural parameters, was utilized. The matching table permitted to classify the selected parameters into three classes of decreasing vine performance. A set of 79 experimental plots, sited on 47 farms, were utilized during a time span varying from two to five years (1989-1992; 1993-1994; 1997-2000; 2002-2007 and 2008-2009). Two datasets were created. One considering all the invariant soil and topography characteristics of the plots. The second, storing the year-depended variables. The data were submitted to principal component analysis (PCA) to highlight those invariant and year-depended climate and pedoclimate variables which were significantly correlated with the average values of the VPS of each vineyard. Discriminant Analysis was employed to identify the most significant variables and their discriminating power on VPS.
The results highlighted that invariant site characteristics are the most discriminant at the province level, while climate and pedoclimate show their influence on VPS at more detailed scales. At the province level, VPS is significantly influenced by rock fragments, stoniness, available water capacity (AWC), and elevation. The ideal soil for Sangiovese in the province of Siena is placed between 315 and 335 m asl, has an AWC ranging from 110 and 120 mm, shows a limited surficial stoniness of about 8-10%, and it is rather skeletal (rock fragments content 12-16%).
These results can be used in land evaluation and vine zoning, in particular, for the selection of the best crus of the province, they may help the choice of land for a new vine planting, but they might be also used in pedotechnique, that is, in the creation of vineyard soils by means of earth movements.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

P. Bucelli (1), R. Barbetti (1), G. L’Abate (1), S. Pellegrini (1), P. Storchi (2), E.A.C. Costantini (1)

(1) Agricultural Research Council. Research Centre for Agrobiology and Pedology – Piazza M. D’ Azeglio, 30 – 50121 Firenze, Italy
(2) Agricultural Research Council. Research Unite for Viticulture – SOP – Via Romea 53 – 52020 Arezzo, Italy

Contact the author

Keywords

soil, climate, grape, red wine, Tuscany

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.

A comprehensive and accurate annotation for the grapevine T2T genome 

Addressing the opportunities and challenges of genomics methods in grapevine (Vitis vinifera L.) requires the development of a comprehensive and accurate reference genome and annotation. We aimed to create a new gene annotation for the PN40024 grapevine reference genome by integrating the highly accurate and complete T2T assembly and the manually curated PN40024.v4 annotation. Here, we present a novel workflow to enhance the annotation of the T2T genome by incorporating past community input found in PN40024.v4. The pipeline’s containerization will improve the workflow’s reproducibility and flexibility, facilitating its inclusion as a shared workflow on the Grapedia portal, the grapevine genomics encyclopedia.

Study to optimize the effectiveness of copper treatments for low impact viticulture

Among all pathologies that afflict grapevine, Downy Mildew (DM) is the most important. Generally controlled using Copper (Cu), recently European Commission confirmed its usage but limiting the maximum amount to 28 Kg per hectare in 7 years (Reg. EU 2018/1981).

Assessment of antimicrobial effect of chitosan extracted from different sources against unwanted wine microorganisms

During wine production process high attention to the microbiological control from fermentation of the grape must to bottling is necessary. In fact, control of the indigenous microflora of the grape ensures correct fermentation activity of the inoculated starter, while control of the microorganisms in the finished wine is essential to prevent wine spoilage and to ensure the dominance of the desired bacteria when malolactic fermentation is required (Mas and Portillo, 2022).

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations

Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum.