Terroir 2010 banner
IVES 9 IVES Conference Series 9 What is the best soil for Sangiovese quality wine?

What is the best soil for Sangiovese quality wine?

Abstract

Sangiovese is one of the main cultivar in the Italian ampelographic outline and it occupies more than 60% of total vineyard surface in the Tuscany region. It is also well known that the environmental variability causes an important influence over the viticultural and oenological results of Sangiovese, which does not have strict genetic control over the vegetal-productive behaviour.
The aim of this work was to single out the best soil characteristics for Sangiovese quality, on the basis of the vine performance of Sangiovese (VPS). For this purpose, a matching table, considering eight viticultural parameters, was utilized. The matching table permitted to classify the selected parameters into three classes of decreasing vine performance. A set of 79 experimental plots, sited on 47 farms, were utilized during a time span varying from two to five years (1989-1992; 1993-1994; 1997-2000; 2002-2007 and 2008-2009). Two datasets were created. One considering all the invariant soil and topography characteristics of the plots. The second, storing the year-depended variables. The data were submitted to principal component analysis (PCA) to highlight those invariant and year-depended climate and pedoclimate variables which were significantly correlated with the average values of the VPS of each vineyard. Discriminant Analysis was employed to identify the most significant variables and their discriminating power on VPS.
The results highlighted that invariant site characteristics are the most discriminant at the province level, while climate and pedoclimate show their influence on VPS at more detailed scales. At the province level, VPS is significantly influenced by rock fragments, stoniness, available water capacity (AWC), and elevation. The ideal soil for Sangiovese in the province of Siena is placed between 315 and 335 m asl, has an AWC ranging from 110 and 120 mm, shows a limited surficial stoniness of about 8-10%, and it is rather skeletal (rock fragments content 12-16%).
These results can be used in land evaluation and vine zoning, in particular, for the selection of the best crus of the province, they may help the choice of land for a new vine planting, but they might be also used in pedotechnique, that is, in the creation of vineyard soils by means of earth movements.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

P. Bucelli (1), R. Barbetti (1), G. L’Abate (1), S. Pellegrini (1), P. Storchi (2), E.A.C. Costantini (1)

(1) Agricultural Research Council. Research Centre for Agrobiology and Pedology – Piazza M. D’ Azeglio, 30 – 50121 Firenze, Italy
(2) Agricultural Research Council. Research Unite for Viticulture – SOP – Via Romea 53 – 52020 Arezzo, Italy

Contact the author

Keywords

soil, climate, grape, red wine, Tuscany

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Pratiques de taille et développement des jeunes vignes

Dans le cadre de TerclimPro 2025, Gonzaga Santesteban a présenté l’article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8465

Soils, climate, nutritive status and production of cv “Palomino fino” in the superior quality area of the Jerez-Xérès-Sherry zone

The Registered Appellation of Origin Mark (RAOM) « Jerez-Xérès-Sherry and Manzanilla Sanlucar de Barrameda » is one of the oldest and more important zone in wine history and production. «Albarizas» unit (white calcareous marls with sea-fossils) is the most representative geological material of the RAOM (75%) and even more in the central-NW area of the RAOM, known as «Jerez Superior» area (Superior Quality Sherry Area). « Albarizas » form undulated hillocks (3-10% slope) and hills (>10% slope), the litologic unit has E-W and S-W direction, and Regosols and Leptosols are the principal soils.

Revisiting esters hydrolysis in young white wines

Esters play an essential role in the young white wines’ fruity expression, particularly the groups of ethyl esters of fatty acids (EEFAs) and higher alcohol acetates (HAAs) [1]. However, generally, these groups of esters decrease relatively fast during the first two years of ageing [1, 2].

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines.

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation. Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.