Terroir 2010 banner
IVES 9 IVES Conference Series 9 What is the best soil for Sangiovese quality wine?

What is the best soil for Sangiovese quality wine?

Abstract

Sangiovese is one of the main cultivar in the Italian ampelographic outline and it occupies more than 60% of total vineyard surface in the Tuscany region. It is also well known that the environmental variability causes an important influence over the viticultural and oenological results of Sangiovese, which does not have strict genetic control over the vegetal-productive behaviour.
The aim of this work was to single out the best soil characteristics for Sangiovese quality, on the basis of the vine performance of Sangiovese (VPS). For this purpose, a matching table, considering eight viticultural parameters, was utilized. The matching table permitted to classify the selected parameters into three classes of decreasing vine performance. A set of 79 experimental plots, sited on 47 farms, were utilized during a time span varying from two to five years (1989-1992; 1993-1994; 1997-2000; 2002-2007 and 2008-2009). Two datasets were created. One considering all the invariant soil and topography characteristics of the plots. The second, storing the year-depended variables. The data were submitted to principal component analysis (PCA) to highlight those invariant and year-depended climate and pedoclimate variables which were significantly correlated with the average values of the VPS of each vineyard. Discriminant Analysis was employed to identify the most significant variables and their discriminating power on VPS.
The results highlighted that invariant site characteristics are the most discriminant at the province level, while climate and pedoclimate show their influence on VPS at more detailed scales. At the province level, VPS is significantly influenced by rock fragments, stoniness, available water capacity (AWC), and elevation. The ideal soil for Sangiovese in the province of Siena is placed between 315 and 335 m asl, has an AWC ranging from 110 and 120 mm, shows a limited surficial stoniness of about 8-10%, and it is rather skeletal (rock fragments content 12-16%).
These results can be used in land evaluation and vine zoning, in particular, for the selection of the best crus of the province, they may help the choice of land for a new vine planting, but they might be also used in pedotechnique, that is, in the creation of vineyard soils by means of earth movements.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

P. Bucelli (1), R. Barbetti (1), G. L’Abate (1), S. Pellegrini (1), P. Storchi (2), E.A.C. Costantini (1)

(1) Agricultural Research Council. Research Centre for Agrobiology and Pedology – Piazza M. D’ Azeglio, 30 – 50121 Firenze, Italy
(2) Agricultural Research Council. Research Unite for Viticulture – SOP – Via Romea 53 – 52020 Arezzo, Italy

Contact the author

Keywords

soil, climate, grape, red wine, Tuscany

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Depletion Of Vine-Shoots Phenolic Composicion After Being Used As An Enological Tool For Wine Differentiation

Pruning vine-shoots are a viticulture waste that have been traditionally poorly exploited in relation to its chemical minority composition related to phenolic and volatile compounds. In this line, toasted vine-shoots supposes a proposal of enological tool to use to modulate the chemical and sensorial profile of wines. From a phenolic point of view, when vine-shoots are used during winemaking mainly influence to increase the flavanols and stilbenes content, mostly trans-resveratrol, as also an increasing in the sweet tannins and decreasing the green character and total anthocyanins, changing the violet for garnet colour.

Modeling island and coastal vineyards potential in the context of climate change

Climate change impacts regional and local climates, which in turn affects the world’s wine regions. In the short term, these modifications rises issues about maintaining quality and style of wine, and in a longer term about the suitability of grape varieties and the sustainability of traditional wine regions. Thus, adaptation to climate change represents a major challenge for viticulture. In this context, island and coastal vineyards could become coveted areas due to their specific climatic conditions. In regions subject to warming, the proximity of the sea can moderate extremes temperatures, which could be an advantage for wine. However, coastal and island areas are particular prized spaces and subject to multiple pressures that make the establishment or extension of viticulture complex.
In this perspective, it seems relevant to assess the potentialities of coastal and island areas for viticulture. This contribution will present a spatial optimization model that tends to characterize most suitable agroclimatic patterns in historical or emerging vineyards according to different scenarios. Thanks to an in-depth bibliography a global inventory of coastal and insular vineyards on a worldwide scale has been realized. Relevant criteria have been identified to describe the specificities of these vineyards. They are used as input data in the optimization process, which will optimize some objectives and spatial aspects. According to a predefined scenario, the objectives are set in three main categories associated with climatic characteristics, vineyards characteristics and management strategies. At the end of this optimization process, a series of maps presents the different spatial configurations that maximize the scenario objectives.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

Unleashing the power of artificial intelligence for viticulture and oenology on earth and space

Implementing artificial intelligence (AI) in viticulture and enology is a rapidly growing field of research with an essential number of potential practical applications.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.