Terroir 2010 banner
IVES 9 IVES Conference Series 9 What is the best soil for Sangiovese quality wine?

What is the best soil for Sangiovese quality wine?

Abstract

Sangiovese is one of the main cultivar in the Italian ampelographic outline and it occupies more than 60% of total vineyard surface in the Tuscany region. It is also well known that the environmental variability causes an important influence over the viticultural and oenological results of Sangiovese, which does not have strict genetic control over the vegetal-productive behaviour.
The aim of this work was to single out the best soil characteristics for Sangiovese quality, on the basis of the vine performance of Sangiovese (VPS). For this purpose, a matching table, considering eight viticultural parameters, was utilized. The matching table permitted to classify the selected parameters into three classes of decreasing vine performance. A set of 79 experimental plots, sited on 47 farms, were utilized during a time span varying from two to five years (1989-1992; 1993-1994; 1997-2000; 2002-2007 and 2008-2009). Two datasets were created. One considering all the invariant soil and topography characteristics of the plots. The second, storing the year-depended variables. The data were submitted to principal component analysis (PCA) to highlight those invariant and year-depended climate and pedoclimate variables which were significantly correlated with the average values of the VPS of each vineyard. Discriminant Analysis was employed to identify the most significant variables and their discriminating power on VPS.
The results highlighted that invariant site characteristics are the most discriminant at the province level, while climate and pedoclimate show their influence on VPS at more detailed scales. At the province level, VPS is significantly influenced by rock fragments, stoniness, available water capacity (AWC), and elevation. The ideal soil for Sangiovese in the province of Siena is placed between 315 and 335 m asl, has an AWC ranging from 110 and 120 mm, shows a limited surficial stoniness of about 8-10%, and it is rather skeletal (rock fragments content 12-16%).
These results can be used in land evaluation and vine zoning, in particular, for the selection of the best crus of the province, they may help the choice of land for a new vine planting, but they might be also used in pedotechnique, that is, in the creation of vineyard soils by means of earth movements.

 

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

P. Bucelli (1), R. Barbetti (1), G. L’Abate (1), S. Pellegrini (1), P. Storchi (2), E.A.C. Costantini (1)

(1) Agricultural Research Council. Research Centre for Agrobiology and Pedology – Piazza M. D’ Azeglio, 30 – 50121 Firenze, Italy
(2) Agricultural Research Council. Research Unite for Viticulture – SOP – Via Romea 53 – 52020 Arezzo, Italy

Contact the author

Keywords

soil, climate, grape, red wine, Tuscany

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Evaluating the greenness of wine analytical chemistry: A new metric approach

Wine is a complex matrix whose composition depends on climatic, agricultural, and winemaking factors, making quality control and authenticity assessment critical in the global market.

Does spotted lanternfly phloem-feeding have downstream effects on wine volatiles? Preliminary insights into compositional shifts

The Spotted lanternfly (SLF), first detected in the U.S. in 2014, is an invasive phloem-feeding planthopper that poses a growing threat to grape and wine production in the U.S. In Pennsylvania, where it was first detected, reductions in grapevine production and fruit quality have been reported by commercial growers. Recent advances have begun to elucidate how SLF affects grapevine physiology and resource allocation, but no research has identified how SLF affects wine chemical composition and quality. Documented reductions in fruit sugar allocation due to heavy SLF phloem-feeding may have downstream effects on wine fermentation dynamics. Additionally, secondary metabolic responses stimulated by SLF may also influence berry chemical composition. The present study investigated SLF-mediated effects on wine composition through analysis of the volatile composition of wines produced from white- and red-fruited varieties of different Vitis parentage (e.g., Vitis vinifera vs. interspecific hybrids) following prolonged exposure to adult SLF phloem-feeding.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.

Potentiel des sols viticoles et qualité des vins

La qualité des vins dépend de différents facteurs et procédés, notamment de la nature des terrains viticoles. Dans ce travail, nous avons cherché à établir les liens entre descripteurs pédologiques des parcelles et descripteurs sensoriels des vins. Sur la base de Classifications Ascendantes Hiérarchiques (CAH) et d’Analyses en Composante Principale (ACP), il a été possible d’établir des liens entre la nature des parcelles (sableuse, argileuse, sablo-graveuleuse) et certains descripteurs sensoriels des vins (chaleur, astringence, fruit noir) et plus globalement avec le type de vins élaborés.