Terroir 2010 banner
IVES 9 IVES Conference Series 9 Determination of aromatic characteristics from Syrah and Tempranillo tropical wines elaborated in Northeast Brazil

Determination of aromatic characteristics from Syrah and Tempranillo tropical wines elaborated in Northeast Brazil

Abstract

[English version below]

Dans la region Nord-Est du Brésil, située à la Vallée du São Francisco, localiséee entre les paralleles 8-9º HS, la production de vins tropicaux a commencé il y a une vigntaine d’années. Dans cette région, il est possible d’avoir au minimum deux récoltes par an, car la moyenne de température est de 26 ºC, avec une pluviosité moyenne de 550 mm entre les mois de janvier-avril. Comme la pluviosité n’est pas constante, l’irrigation est donc necéssaire pour la production de raisins de table et de cuve. La recherche scientifique a commencé il y a seulement sept ans, avec des travaux ménés sur les études d’amélioration de la qualité des vins a partir d’introduction de cépages récemment implantés dans ces conditions. Les principaux cépages sont, pour les vins rouges, la Syrah, le Cabernet Sauvignon et le Tempranillo, tandis que pour les blancs, le Chenin blanc, le Moscato Cannelli et le Viognier. Le but de ce travail a été déterminer les composés aromatiques des vins Syrah et Tempranillo, afin de caractériser et d’expliquer la typicité des vins tropicaux de la Vallée du fleuve São Francisco. Les vignobles évalués ont été installés en espalier, les vignes gréfées sur le porte-greffe IAC-766 (106-8 x Vitis caribeae), avec l’irrigation par goutte à goutte. Les vins ont été élaborés en juillet 2008, par la méthode traditionnelle, en cuve en acier de 200 L, la fermentation alcoholique à été réalisée à 25 ºC et la malolactique à 18 ºC. Après la stabilisation des vins au froid, les vins ont été embouteillées et analysés 6 mois après, en utilisant la cromatographie en phase gazeuse. Comme résultats, ont été trouvés des différences intéressantes entre les compositions aromatiques des vins rouges tropicaux Syrah et Tempranillo, ce qui peut expliquer les spécificités de l’expression génétiques de chaque cépage dans ces conditions chaudes du Nord-Est du Brésil, avec des différentes typicités des vins analysés.

In Northeast of Brazil, in the Lower-Middle region of São Francisco Valley, located between parallels 8-9º of the South Hemisphere, tropical wine production has started twenty years ago. In this region it’s possible to have two or three harvests per year, because of annual average air temperature is 26 ºC and normal rainfall of 550 mm, mostly rainfall between November and April. As rainfall distribution is erratic, irrigation practice is required throughout the year to produce winegrapes. The scientific research started only seven years ago and and one of the ongoing research focus is on enhance wine quality according to the use of cultivars introduced in this region. The main cultivars cropped used are Syrah, Cabernet Sauvignon and Tempranillo for red wines, and Chenin blanc, Moscato Canelli and Viognier for white wines. The objective of this work was to determine aromatic compounds of Syrah and Tempranillo red wines to characterize and to explain the typicity of the red wines from these two cultivars in the São Francisco Valley. The vineyards evaluated were arranged on spalier, with vines grafted on IAC-766 (106-8 x Vitis caribeae) and irrigated by drip. Wines were elaborated in July 2008, by using traditional method in 200 L inox tanks , with alcoholic (25 ºC) and malolactic (18 ºC) fermentations. After cold stabilization, wines were bottled and analyzed 6 months later by using gas chromatography. As results, it was found interesting differences on aromatic composition of the Syrah and Tempranillo red wines, which allows to explain about specific genetic expression of each cultivar in the warm conditions of Northeast Brazil, with different wine typicities.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Ana Julia de Brito Araújo (1), Regina Vanderlinde (2), Luciana Leite de Andrade Lima (3), Giuliano Elias Pereira (4)

(1) Étudiante Master UNEB/Embrapa Semiárido
(2) Professeur UCS/Ibravin
(3) Professeur UFRPE
(4) Embrapa Uva e Vinho/Semiárido, BR 428, km 152, BP 23, CEP 56.302-970, Petrolina-PE, Brésil

Contact the author

Keywords

Vitis vinifera L., vins tropicaux, composés aromatiques, typicité, identité régionale
Vitis vinifera L., tropical wines, aromatic compounds, typicity, regional identity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln).

Use of pectinolytic yeast in wine fermentations

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input.

Impact of oenological tannins on microvinifications affected by downy mildew

AIM: Vine diseases are still responsible for economic losses. Previous study in our laboratory, have shown effects of oenological tannins against Botrytis cinerea1,2. According to this, the aim was to evaluate the wine protection by oenological tannins against an another disease, the downy mildew. METHODS: During the 2020 vintage, infected grapes by downy mildew (Vitis vinifera cv. Merlot) were collected from the dispositive ResIntBio. The 100 kg were crushed, destemmed and dispatch into 10 aluminium tanks. SO2 was added at 3 g/hL. Oenological tannins (grape, quebracho, ellagitannin or gallotannin) were added at 100 g/hL into eight different tanks (4×2 tanks). The two last tanks were considered as control without addition of oenological tannins. Alcoholic fermentation was achieved with Actiflore 33® at 20 g/hL. Malolactic fermentation was achieved with Lactoenos B7at 1 g/hL. Finished wines were sulfited to obtain 45 mg/L of total SO2.

Efficacy of tannins of different botanical origin as partial or total substitute of SO2 to preserve a Cortese white wine during storage in cellar

While SO2 is one of the oldest and widest additive used in enology for its well-known antioxidant, anti-laccase and antimicrobial properties, it can cause health problems in some individuals.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.