Terroir 2010 banner
IVES 9 IVES Conference Series 9 Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Abstract

Sauvignon blanc was first planted in Marlborough, New Zealand in the mid-1970s. Since that time, Marlborough has gained an international reputation by producing the definitive wine style of that grape variety. However, within the relatively small geographic region of Marlborough, distinctive sub-regional differences in flavour and aroma profiles are now being defined. For example, wines made from fruit grown in the lower Awatere Valley (30 km south of Blenheim) typically have higher herbaceous characters, associated with higher concentrations of iso-butyl methoxypyrazine (IBMP) when compared to wines made from fruit harvested at the same soluble solids in the Wairau Valley.
Experiments conducted over the past five years have investigated the extent to which these differences in flavour and aroma profiles are a reflection of soil, climate or management (in particular grape yield and harvest date). Fruit has been harvested at a soluble solids of 21.5 to 22.5 o Brix on each of five vineyard sites (four in the main Wairau Valley and one in the cooler Awatere Valley), and covering a range of soil types. Vines were either trained using a 2-cane or 4-cane vertical shoot positioning system at each site, to investigate the possible effect of vine yield. The higher yields resulted in a later harvest date (the date on which 21.5 o Brix was reached) at each site. In general this also resulted in lower IBMP concentrations in the wines.
The results from these experiments provide winemakers with an understanding of the effect of the interaction of site, grapevine yield and harvest date on Sauvignon blanc wine aroma and flavour profile, allowing them to express the sub-regional Marlborough “Terroir” of this wine.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M.C.T. Trought (1), R.H. Agnew (1), J.S. Bennett (1), K. Stronge (1), W. Parr (2), M. Greven (1)

(1) The New Zealand Institute for Plant and Food Research Ltd
Marlborough Wine Research Centre
PO Box 845, Blenheim 7240, New Zealand
(2) Faculty of Agriculture and Life Sciences,
Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand

Contact the author

Keywords

Marlborough, Sauvignon blanc, Terroir, thiol, methoxypyrazine

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Metschnikowia pulcherrima as biocontrol agent in white winemaking

Biocontrol using non-Saccharomyces yeasts is an alternative strategy to chemical additives to prevent the growth of spoilage microorganisms.

Ten years soil diagnosis in vineyards, with particularly analysis of organic and microbial mass and measuring their evolution

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition

Role of landscape diversity for biodiversity conservation in viticulture: life+ biodivine’s results

Nowadays biodiversity loss is considered as a prior environmental issue. Agricultural landscapes are particularly concerned, mainly through the specialization and intensification of farming activities which lead, at a larger scale, to landscape simplification. Landscape management would be a good means to halt biodiversity loss, but large-scale studies remain rare. The life+ project BioDiVine aims to understand biodiversity dynamics and promote sustainable conservation actions at this scale in viticulture.

Climate change is here to stay: adapting vineyards to a warming world

As an industry that thrives more on, but may also be more affected by, vintage variation and regionality than any other agricultural enterprise, grape and wine production is ever more being impacted challenged by climate change.

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]