Terroir 2010 banner
IVES 9 IVES Conference Series 9 Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Abstract

Sauvignon blanc was first planted in Marlborough, New Zealand in the mid-1970s. Since that time, Marlborough has gained an international reputation by producing the definitive wine style of that grape variety. However, within the relatively small geographic region of Marlborough, distinctive sub-regional differences in flavour and aroma profiles are now being defined. For example, wines made from fruit grown in the lower Awatere Valley (30 km south of Blenheim) typically have higher herbaceous characters, associated with higher concentrations of iso-butyl methoxypyrazine (IBMP) when compared to wines made from fruit harvested at the same soluble solids in the Wairau Valley.
Experiments conducted over the past five years have investigated the extent to which these differences in flavour and aroma profiles are a reflection of soil, climate or management (in particular grape yield and harvest date). Fruit has been harvested at a soluble solids of 21.5 to 22.5 o Brix on each of five vineyard sites (four in the main Wairau Valley and one in the cooler Awatere Valley), and covering a range of soil types. Vines were either trained using a 2-cane or 4-cane vertical shoot positioning system at each site, to investigate the possible effect of vine yield. The higher yields resulted in a later harvest date (the date on which 21.5 o Brix was reached) at each site. In general this also resulted in lower IBMP concentrations in the wines.
The results from these experiments provide winemakers with an understanding of the effect of the interaction of site, grapevine yield and harvest date on Sauvignon blanc wine aroma and flavour profile, allowing them to express the sub-regional Marlborough “Terroir” of this wine.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M.C.T. Trought (1), R.H. Agnew (1), J.S. Bennett (1), K. Stronge (1), W. Parr (2), M. Greven (1)

(1) The New Zealand Institute for Plant and Food Research Ltd
Marlborough Wine Research Centre
PO Box 845, Blenheim 7240, New Zealand
(2) Faculty of Agriculture and Life Sciences,
Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand

Contact the author

Keywords

Marlborough, Sauvignon blanc, Terroir, thiol, methoxypyrazine

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Effect of certain climatic variables on the phenolic and aromatic composition of two red grape varieties (Merlot and Cabernet-Sauvignon) grown in the Mancha region (Spain)

Between 2002 and 2004 we studied the behaviour of two red grape varieties – Merlot and Cabernet Sauvignon – within the scope of an experimental protocol encompassing 14 plots, 7 of which had not been cultivated, situated in geographically distant locations representing different terroirs of Castilla-La Mancha.

May lactic acid bacteria play an important role in sparkling wine elaboration?

The elaboration of sparkling wine is a demanding process requiring technical as well as scientific skills. Uncovering the role of the terroir to the final product quality is of great importance for the wine market. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown. The malolactic fermentation (MLF) is carried out by the lactic acid bacteria after the alcoholic fermentation in order to ensure the microbial stability during the second fermentation that takes place in the bottle or in tanks. Oenococcus oeni is the only selected species to drive MLF that has been commercialized for sparkling wine elaboration and it is naturally present on grapes, in the cellar and also in the final product. However, whether the bacterial strain contributes to the sensory characteristics of sparkling wine is still questioned.

Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Vegetative propagation of grapevines can generate spontaneous somatic variations, providing a valuable source for cultivar improvement. In this context, natural variation in the composition of phenolic compounds in grapevine berries and seeds stands as a pivotal factor in crafting wines with diverse oenological profiles from the same cultivar. To deepen on the understanding of the physiological and genetic mechanisms driving somatic variation in grape phenolics, here we characterized a somatic variant from Tempranillo Tinto, the clone VN21, that exhibits an intense reduced berry skin cuticle and increased extractability of phenolic compounds during wine fermentation.

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.

Come proteggere un territorio viticolo: il punto di vista del giurista

La valanga di fango che si è abbattuta nel Salemitano e nell’Avellinese, provocando decine di vittime, è stata causata in larga misura dalle insufficienti opere idrauliche e dalla manca­ta manutenzione di antiquati canali idrici.