Terroir 2010 banner
IVES 9 IVES Conference Series 9 Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Abstract

Sauvignon blanc was first planted in Marlborough, New Zealand in the mid-1970s. Since that time, Marlborough has gained an international reputation by producing the definitive wine style of that grape variety. However, within the relatively small geographic region of Marlborough, distinctive sub-regional differences in flavour and aroma profiles are now being defined. For example, wines made from fruit grown in the lower Awatere Valley (30 km south of Blenheim) typically have higher herbaceous characters, associated with higher concentrations of iso-butyl methoxypyrazine (IBMP) when compared to wines made from fruit harvested at the same soluble solids in the Wairau Valley.
Experiments conducted over the past five years have investigated the extent to which these differences in flavour and aroma profiles are a reflection of soil, climate or management (in particular grape yield and harvest date). Fruit has been harvested at a soluble solids of 21.5 to 22.5 o Brix on each of five vineyard sites (four in the main Wairau Valley and one in the cooler Awatere Valley), and covering a range of soil types. Vines were either trained using a 2-cane or 4-cane vertical shoot positioning system at each site, to investigate the possible effect of vine yield. The higher yields resulted in a later harvest date (the date on which 21.5 o Brix was reached) at each site. In general this also resulted in lower IBMP concentrations in the wines.
The results from these experiments provide winemakers with an understanding of the effect of the interaction of site, grapevine yield and harvest date on Sauvignon blanc wine aroma and flavour profile, allowing them to express the sub-regional Marlborough “Terroir” of this wine.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M.C.T. Trought (1), R.H. Agnew (1), J.S. Bennett (1), K. Stronge (1), W. Parr (2), M. Greven (1)

(1) The New Zealand Institute for Plant and Food Research Ltd
Marlborough Wine Research Centre
PO Box 845, Blenheim 7240, New Zealand
(2) Faculty of Agriculture and Life Sciences,
Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand

Contact the author

Keywords

Marlborough, Sauvignon blanc, Terroir, thiol, methoxypyrazine

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

The combined effects of climate, soils, and deficit irrigation on yield and quality of Touriga Nacional under high atmospheric demand in the Douro Region

Global warming is one of the biggest environmental, social and economic threats in several viticultural regions. In the Douro Valley, changes are expected in the coming years, namely an increase in temperature and a decrease in precipitation. These changes are likely to have consequences for the production and quality of wine.
The aim of this study was to explore the effects of different soil characteristics combined with several deficit irrigation strategies, managed throughout ETc references and predawn leaf water potentials thresholds, on physiology, yield, and qualitative attributes on the Touriga Nacional variety under years of mild to severe water and heat stress.
The studies were conducted over seven years (2015 to 2021) in two plots of a commercial vineyard located at Quinta do Ataíde (Symington Family Estates) planted in 2011 and 2014 at 170 meters elevation, growing under three water regimes: non-irrigated (NI) and two deficit irrigation strategies (30% and 60% ETc) assessed weekly by Ψpd. The site has an annual rainfall below 500 mm, with high atmospheric demand. Climate data was collected from a weather station, located on site. Berry ripening was followed weekly for fruit analysis. At harvest, yield, vigour and pruning weight per vine were determined from 90 vines by treatment. Each season at veraison the NDVI Index was accessed by a drone. The soils physic-chemistry in the experimental blocs were analysed and grouped by SWHC. Delta C-13 analyses were also performed per treatment in two years.Irrigation had a positive effect on yield per vine, mostly due to an increase in berry and cluster weight, and fertility index through the years. A significant increase in sugar content, colour and phenols was observed with deficit irrigation in some years, but vine vigour related to soil characteristics had by far the greatest impact on quality.

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln).

Effects of the biodynamic preparations 500 and 501 on vine and berry physiology, pedology and the soil microbiome

In the pursuit of increasing sustainability, climate change resiliency and independence of synthetic pesticides in agriculture, the interest of consumers and producers in organic and biodynamic farming is steadily increasing. This is in particular the case for the vitivinicultural industry in Europe, where more and more producers are converting from organic to biodynamic farming. However, clear scientific evidence showing that biodynamic farming improves vine physiology, vine stress resilience, berry or wine quality, or is more sustainable for the environment is still lacking although this issue has been addressed by several research teams worldwide.

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®.