Terroir 2010 banner
IVES 9 IVES Conference Series 9 Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Abstract

Sauvignon blanc was first planted in Marlborough, New Zealand in the mid-1970s. Since that time, Marlborough has gained an international reputation by producing the definitive wine style of that grape variety. However, within the relatively small geographic region of Marlborough, distinctive sub-regional differences in flavour and aroma profiles are now being defined. For example, wines made from fruit grown in the lower Awatere Valley (30 km south of Blenheim) typically have higher herbaceous characters, associated with higher concentrations of iso-butyl methoxypyrazine (IBMP) when compared to wines made from fruit harvested at the same soluble solids in the Wairau Valley.
Experiments conducted over the past five years have investigated the extent to which these differences in flavour and aroma profiles are a reflection of soil, climate or management (in particular grape yield and harvest date). Fruit has been harvested at a soluble solids of 21.5 to 22.5 o Brix on each of five vineyard sites (four in the main Wairau Valley and one in the cooler Awatere Valley), and covering a range of soil types. Vines were either trained using a 2-cane or 4-cane vertical shoot positioning system at each site, to investigate the possible effect of vine yield. The higher yields resulted in a later harvest date (the date on which 21.5 o Brix was reached) at each site. In general this also resulted in lower IBMP concentrations in the wines.
The results from these experiments provide winemakers with an understanding of the effect of the interaction of site, grapevine yield and harvest date on Sauvignon blanc wine aroma and flavour profile, allowing them to express the sub-regional Marlborough “Terroir” of this wine.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M.C.T. Trought (1), R.H. Agnew (1), J.S. Bennett (1), K. Stronge (1), W. Parr (2), M. Greven (1)

(1) The New Zealand Institute for Plant and Food Research Ltd
Marlborough Wine Research Centre
PO Box 845, Blenheim 7240, New Zealand
(2) Faculty of Agriculture and Life Sciences,
Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand

Contact the author

Keywords

Marlborough, Sauvignon blanc, Terroir, thiol, methoxypyrazine

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate.

isUP-AgrO European project – unlocking the potential for agricultural research on an EU outmost region: boosting ISOPlexis center

The isUP-AgrO project aims to enhance the capability of ISOPlexis – Centre of Sustainable Agriculture and Food Technology, a research unit from the University of Madeira, an outermost region of Portugal.

Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Global warming has enhanced the frequency and severity of drought events, hence calling for a better management of water resources in the vineyard and for an improvement of breeding platforms. Somatic embryogenesis (SE) (i.e. the initiation of embryos from somatic tissues) can spontaneously generate new genetic variability, which results from genetic mutations, changes in epigenetic marks, or phenotypic alterations.
This study was tailored to test whether vines in vitro regenerated through SE (i.e. somaclones), can tolerate water deprivation better than the mother plant.

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019).

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.