Terroir 2010 banner
IVES 9 IVES Conference Series 9 Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Abstract

Sauvignon blanc was first planted in Marlborough, New Zealand in the mid-1970s. Since that time, Marlborough has gained an international reputation by producing the definitive wine style of that grape variety. However, within the relatively small geographic region of Marlborough, distinctive sub-regional differences in flavour and aroma profiles are now being defined. For example, wines made from fruit grown in the lower Awatere Valley (30 km south of Blenheim) typically have higher herbaceous characters, associated with higher concentrations of iso-butyl methoxypyrazine (IBMP) when compared to wines made from fruit harvested at the same soluble solids in the Wairau Valley.
Experiments conducted over the past five years have investigated the extent to which these differences in flavour and aroma profiles are a reflection of soil, climate or management (in particular grape yield and harvest date). Fruit has been harvested at a soluble solids of 21.5 to 22.5 o Brix on each of five vineyard sites (four in the main Wairau Valley and one in the cooler Awatere Valley), and covering a range of soil types. Vines were either trained using a 2-cane or 4-cane vertical shoot positioning system at each site, to investigate the possible effect of vine yield. The higher yields resulted in a later harvest date (the date on which 21.5 o Brix was reached) at each site. In general this also resulted in lower IBMP concentrations in the wines.
The results from these experiments provide winemakers with an understanding of the effect of the interaction of site, grapevine yield and harvest date on Sauvignon blanc wine aroma and flavour profile, allowing them to express the sub-regional Marlborough “Terroir” of this wine.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

M.C.T. Trought (1), R.H. Agnew (1), J.S. Bennett (1), K. Stronge (1), W. Parr (2), M. Greven (1)

(1) The New Zealand Institute for Plant and Food Research Ltd
Marlborough Wine Research Centre
PO Box 845, Blenheim 7240, New Zealand
(2) Faculty of Agriculture and Life Sciences,
Lincoln University, PO Box 84, Lincoln 7647, Canterbury, New Zealand

Contact the author

Keywords

Marlborough, Sauvignon blanc, Terroir, thiol, methoxypyrazine

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Integrative grape to wine metabolite analyses to study the vineyard “memory” of wine

Wine production is a complex multi-step process and the end-product is not easily defined in terms of composition and quality due to the diversity of the raw materials (grapes) and the biological agents (yeast and bacteria) used/present during the fermentation. Furthermore, linking what happens in the vineyard to the wine fermentation and ultimately to characteristics in the wine during ageing

Climate regionalization of Uruguayan viticulture for ecological sustainability

Ecological sustainability refers to developing viticulture in adequate environmental conditions.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Different from wild species in arid and semiarid conditions, cultivated species are very sensitive to drought and, beyond some stress thresholds, food production is not possible

Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Much research has sought to define the complex contribution of terroir (varieties x site x cultural practices) on wine composition. This investigation applied recent advances in chemometrics to determine relative contributions of vine growth, berry maturity and site mesoclimate to wine composition and sensory profiles of Shiraz and Cabernet Sauvignon for two vintages.