Terroir 2010 banner
IVES 9 IVES Conference Series 9 Successful technology transfer of the early defoliation technique in cv. Mandó, an autochthon variety from south-east Spain

Successful technology transfer of the early defoliation technique in cv. Mandó, an autochthon variety from south-east Spain

Abstract

In the old-world viticulture autochthonous varieties are an important inheritance because they can provide wines with authenticity and distinction. Cultivar Mandó is an almost extinguished variety from the south-east of Spain with very large and tight clusters. In addition, it is quite late-season ripening. Celler del Roure winery is using Mandó grapes for premium quality wine production. The winery commonly employs cluster thinning to reduce crop level and, at harvest, only the fully healthy clusters are picked. Indeed, around 50 %of the initial crop is then not used for wine-making. The aim of this study was to asses the usefulness of early defoliation as a possible tool to reduce cluster compactness, improving fruit composition and reducing the labor costs associated with cluster thinning. With this in mind, an experiment was conducted with cv. Mandó in deficit irrigated vines trained with a divided Lyra system. Control (C), un-defoliated vines, were compared with de-foliation carried out either; just before anthesis (phenological phase H, (Def-H)), at flowering (phenological phase I, (Def-I)) or at fruit set (phenological stage J, (Def-J)). In all the defoliation treatments, leaves from the first eight nodes, including laterals, were removed. The experimental design was a complete randomized block with three replicates per treatment and 24 experimental vines per experimental plot. As an average for all defoliation treatments, fruit set, berry weight and yield were reduced by 44, 16 and 45 %, respectively. Defoliation increased berry soluble solids concentration only in the Def-H treatment. On the other hand, berry acidity was only decreased in the Def-H treatment. In the ED and LD defoliation treatments, leaf pulling improved berry quality determined with a berry tasting panel. In agreement, berries from the ED and LD also had higher total phenolics, anthocyanins and tannins concentration. Results obtained were judged positively by the winery owners and defoliation, particularly at stage J, will be now more widely conducted in the vineyards planted with the Mandó variety. This is because the detrimental effects of defoliation on yield were similar to the crop reduction previously needed when cluster thinning and selection had to be carried out. The research is indeed an example of a successful transfer of a research technique under commercial situations.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

I. Gómez (1), J. Revert (2), M.D. Esteve (3), M.D. Climent (3) and D.S. Intrigliolo (4)

(1) Tresge Wine Consulting S.L., Ctra. Malilla 25-20
46026 Valencia, Spain
(2) Celler del Roure SL. Ctra. Les Alcusses, Km 2.5
46640 Moixent, Valencia, Spain
(3) Universidad Politécnica de Valencia. Dept Quimica, Camino de Vera s/n, Valencia, Spain
(4) Instituto Valenciano Investigaciones Agrarias. Centro Agricultura Sostenible. Apartado oficial 46113, Moncada, Valencia, Spain

Contact the author

Keywords

Berry taste, yield, total soluble solids, phenolics

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Water status modelling: impact of local rainfall variability in Burgundy (France)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Sensory patterns observed towards the oxidation of white, rosé and sparkling wines: An exploratory study

Oxygen management is crucial in terms of wine quality. Even more for white and rosé wines, which are less protected against oxidation than reds due to the lower levels of antioxidant polyphenols. This need is due to the existence of equilibria between chemical forms depending on the redox potential.