Terroir 2010 banner
IVES 9 IVES Conference Series 9 Successful technology transfer of the early defoliation technique in cv. Mandó, an autochthon variety from south-east Spain

Successful technology transfer of the early defoliation technique in cv. Mandó, an autochthon variety from south-east Spain

Abstract

In the old-world viticulture autochthonous varieties are an important inheritance because they can provide wines with authenticity and distinction. Cultivar Mandó is an almost extinguished variety from the south-east of Spain with very large and tight clusters. In addition, it is quite late-season ripening. Celler del Roure winery is using Mandó grapes for premium quality wine production. The winery commonly employs cluster thinning to reduce crop level and, at harvest, only the fully healthy clusters are picked. Indeed, around 50 %of the initial crop is then not used for wine-making. The aim of this study was to asses the usefulness of early defoliation as a possible tool to reduce cluster compactness, improving fruit composition and reducing the labor costs associated with cluster thinning. With this in mind, an experiment was conducted with cv. Mandó in deficit irrigated vines trained with a divided Lyra system. Control (C), un-defoliated vines, were compared with de-foliation carried out either; just before anthesis (phenological phase H, (Def-H)), at flowering (phenological phase I, (Def-I)) or at fruit set (phenological stage J, (Def-J)). In all the defoliation treatments, leaves from the first eight nodes, including laterals, were removed. The experimental design was a complete randomized block with three replicates per treatment and 24 experimental vines per experimental plot. As an average for all defoliation treatments, fruit set, berry weight and yield were reduced by 44, 16 and 45 %, respectively. Defoliation increased berry soluble solids concentration only in the Def-H treatment. On the other hand, berry acidity was only decreased in the Def-H treatment. In the ED and LD defoliation treatments, leaf pulling improved berry quality determined with a berry tasting panel. In agreement, berries from the ED and LD also had higher total phenolics, anthocyanins and tannins concentration. Results obtained were judged positively by the winery owners and defoliation, particularly at stage J, will be now more widely conducted in the vineyards planted with the Mandó variety. This is because the detrimental effects of defoliation on yield were similar to the crop reduction previously needed when cluster thinning and selection had to be carried out. The research is indeed an example of a successful transfer of a research technique under commercial situations.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

I. Gómez (1), J. Revert (2), M.D. Esteve (3), M.D. Climent (3) and D.S. Intrigliolo (4)

(1) Tresge Wine Consulting S.L., Ctra. Malilla 25-20
46026 Valencia, Spain
(2) Celler del Roure SL. Ctra. Les Alcusses, Km 2.5
46640 Moixent, Valencia, Spain
(3) Universidad Politécnica de Valencia. Dept Quimica, Camino de Vera s/n, Valencia, Spain
(4) Instituto Valenciano Investigaciones Agrarias. Centro Agricultura Sostenible. Apartado oficial 46113, Moncada, Valencia, Spain

Contact the author

Keywords

Berry taste, yield, total soluble solids, phenolics

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Metabolic response of vitis vinifera and interspecific vitis sp. varieties to heat stress, water deficit and combined stress, using a metabolomic approach

As greenhouse gas emissions continue to rise, climate projections indicate an increased likelihood of heat waves and drier conditions in canada. these changes pose significant challenges to grapevine cultivation, particularly during critical growth stages such as new plantings. interspecific hybrid grape varieties, developed through different breeding programs that combine vitis vinifera with more robust species like v. riparia and v. labrusca varieties, are often touted for their potential resilience to environmental stress.

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

Study of the effect of native vineyard bacteria on the expression of Plasmopara viticolaeffectors

Downy mildew, caused by the oomycete Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni, is one of the most destructive grapevine diseases mostly affecting Vitis vinifera L. and impacting on viticulture. The pathogen invasion can induce in grapevine multiple defense reactions, first PAMP-Triggered Immunity and secondly Effector-Triggered Immunity. Plasmopara viticola can overcome these defense mechanisms through the secretion of effectors, such as RxLR, into the plant cells, making it easier for the oomycete to infect grapevines. Currently, the use of chemical pesticides remains the most effective way to control the pathogen with severe negative side effects on the environment and animal health.