Terroir 2010 banner
IVES 9 IVES Conference Series 9 Comparative studies on the dynamics of fermentation of selected wine yeasts

Comparative studies on the dynamics of fermentation of selected wine yeasts

Abstract

Alcoholic fermentation is an anaerobic biochemical process of oxidation-reduction in which carbohydrates are metabolized by the action of yeast enzymes in major products (ethylalcohol and carbon dioxide) and minor products (superior alcohols, aldehydes, acetic acid, glycerol, volatile acids and others). Typical agents of the alcoholic fermentation are from Saccharomyces genus, by fermentation resulting concentrations in ethylic alcohol higher that 8 alcoholic degrees. In this paper it was studied the dynamics of fermentation of 3 strains of Saccharomyces ellipsoideus wine yeast and were observed parameters such as the accumulation of alcohol, the release of CO2, temperature, amount of oxygen released. It was found that alcoholic fermentation depends on medium factors but also on biotechnological qualities of yeasts selected for this purpose.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Ketney Otto,Tita Ovidiu, Oprean Letitia, Tita Mihaela, Gaspar Eniko, Lengyel Ecaterina

Lucian Blaga University
Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Ioan Ratiu street no.7-9
Sibiu, Romania

Contact the author

Keywords

Alcoholic fermentation, Saccharomyces cerevisie var. ellipsoideus, yeast, fermenter

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Évolution de la surmaturation du cépage Chenin dans différents terroirs des Coteaux du Layon en relation avec les variables agroviticoles

The French “Coteaux du Layon” Appellation of Origin has built its Jarne on the production of sweet white wines. A network of experimental plots, based on the “terroir” concept, was established in 1990; it allows for the follow-up of the overripening behaviour of the grapes in relation with the agroviticultural parameters.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Grape and wine quality of terraced local variety Pinela (Vitis vinifera L.) under different water management

Climate change is driving global temperatures up together with a reduction of rainfall, posing a risk to grape yields, wine quality, and threatening the historical viticulture areas of Europe.

Un Système d’Informations à Références Spatiales sur le Vignoble. Un outil performant d’aide aux recherches sur la caractérisation des terroirs viticoles

The “Terroirs d’Anjou” project led by the Agronomy sector of the Vine and Wine Research Unit of the INRA center in Angers aims to characterize the viticultural terroirs in a study area which includes 29 municipalities in the Maine et Loire and cuts across the Anjou, Coteaux du layon and Coteaux de l’Aubance appellation areas.

Climate modeling at local scale in the Waipara winegrowing region in the climate change context

In viticulture, a warming climate can have a very significant impact on grapevine development and therefore on the quality and characteristics of wines across different spatial scales, ranging from global to local. In order to adapt wine-growing to climate change, global climate models can be used to define future scenarios, but only at the scale of major wine regions. Despite the huge progress made over the last ten years in terms of the spatial resolution of climate models (now downscaled to a few square kilometres), they are not yet sufficiently precise to account for the local climate variability associated with such parameters as local topography, in spite of these parameters being decisive for vine and wine characteristics. This study describes a method to downscale future climate scenarios to vineyard scale. Networks of data loggers have been used to collect air temperature at canopy level in the Waipara winegrowing region (New Zealand) over five growing seasons. These measurements allow the creation of fine-scale geostatistical models and maps of temperature (at 100 m resolution) for the growing season. In order to model climate change at pilot site scale, these geostatistical models have been combined with regional climate change predictions for the periods 2031-2050 and 2081-2100 based on the RCP8.5 climate change scenario. The integration of local climate variability with regionalized climate change simulations allows assessment of the impacts of climate change at the vineyard scale. The improved knowledge gained using this methodology results from the increased horizontal resolution that better addresses the concerns of winegrowers. The results provide the local winegrowers with information necessary to understand current processes, as well as historical and future viticulture trends at the scale of their site, thereby facilitating decisions about future response strategies.