Terroir 2010 banner
IVES 9 IVES Conference Series 9 Comparative studies on the dynamics of fermentation of selected wine yeasts

Comparative studies on the dynamics of fermentation of selected wine yeasts

Abstract

Alcoholic fermentation is an anaerobic biochemical process of oxidation-reduction in which carbohydrates are metabolized by the action of yeast enzymes in major products (ethylalcohol and carbon dioxide) and minor products (superior alcohols, aldehydes, acetic acid, glycerol, volatile acids and others). Typical agents of the alcoholic fermentation are from Saccharomyces genus, by fermentation resulting concentrations in ethylic alcohol higher that 8 alcoholic degrees. In this paper it was studied the dynamics of fermentation of 3 strains of Saccharomyces ellipsoideus wine yeast and were observed parameters such as the accumulation of alcohol, the release of CO2, temperature, amount of oxygen released. It was found that alcoholic fermentation depends on medium factors but also on biotechnological qualities of yeasts selected for this purpose.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Ketney Otto,Tita Ovidiu, Oprean Letitia, Tita Mihaela, Gaspar Eniko, Lengyel Ecaterina

Lucian Blaga University
Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Ioan Ratiu street no.7-9
Sibiu, Romania

Contact the author

Keywords

Alcoholic fermentation, Saccharomyces cerevisie var. ellipsoideus, yeast, fermenter

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Carbon sequestration in vineyard soils: biomass utilization in a climate change scenario–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard soils under a climate change scenario.

Simulating single band multispectral imaging from hyperspectral imaging: A study into the application of single band visible to near-infrared multispectral imaging for determining table grape quality

To be accepted by the market and consumers table grapes need to meet certain requirements in terms of physical and chemical quality parameters.

Australia’s Wine Future: A Climate Atlas

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Climate change constitutes an enormous challenge for humankind and for all human activities, viticulture not being an exception. Long-term strategic changes are probably needed the most, but growers also need to deal with short-term changes: summers that are getting progressively warmer, earlier harvest dates and higher pH in musts and wines. In the last 10-15 years, a relevant corpus of research is being developed worldwide in order to evaluate to which extent extreme canopy management operations, aimed at reducing leaf area and, thus, limiting the source to sink ratio, could be useful to delay ripening. Although extreme canopy management can result in relevant delays in harvest dates, longer term studies, as well as detailed analysis of their implications on carbohydrate reserves, bud fertility and future yield are desirable before these practices can be recommended.

Autochthonous yeasts: a microbiological tool to exalt the quality of the apulian sparkling wine

The selection, characterization, and recruitment of autochthonous yeast strains to drive the alcoholic fermentation process is a highly researched practice because it allows the differentiation of the organoleptic properties of wines, assuring process standardization, reducing fermentation times and improving the quality and safety of the final products [1, 2]. Sparkling wines are “special wines” obtained by secondary fermentation of the base wine. ​In the traditional method (Champenoise method), the re-fermentation takes place in the bottle after the addition to the base wine of the so-called tirage solution. This step, also known as prise de mousse, is followed by an aging period characterized by the release of compounds from the yeast cells that affect the organoleptic properties of the final product. The use of autochthonous yeasts as starter cultures for secondary fermentation is one of the recent innovations proposed to enhance and differentiate these wines’ sensory quality [3,4]. Apulia is the second Italian wine-producing region, and its productive chain is now going through a qualitative evolution by implementing the employment of innovative approaches to exalt the peculiar properties of regional wines.