Terroir 2010 banner
IVES 9 IVES Conference Series 9 Comparative studies on the dynamics of fermentation of selected wine yeasts

Comparative studies on the dynamics of fermentation of selected wine yeasts

Abstract

Alcoholic fermentation is an anaerobic biochemical process of oxidation-reduction in which carbohydrates are metabolized by the action of yeast enzymes in major products (ethylalcohol and carbon dioxide) and minor products (superior alcohols, aldehydes, acetic acid, glycerol, volatile acids and others). Typical agents of the alcoholic fermentation are from Saccharomyces genus, by fermentation resulting concentrations in ethylic alcohol higher that 8 alcoholic degrees. In this paper it was studied the dynamics of fermentation of 3 strains of Saccharomyces ellipsoideus wine yeast and were observed parameters such as the accumulation of alcohol, the release of CO2, temperature, amount of oxygen released. It was found that alcoholic fermentation depends on medium factors but also on biotechnological qualities of yeasts selected for this purpose.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Ketney Otto,Tita Ovidiu, Oprean Letitia, Tita Mihaela, Gaspar Eniko, Lengyel Ecaterina

Lucian Blaga University
Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Ioan Ratiu street no.7-9
Sibiu, Romania

Contact the author

Keywords

Alcoholic fermentation, Saccharomyces cerevisie var. ellipsoideus, yeast, fermenter

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves.

Corvina berry morphology and grape composition as affected by two training system (Pergola and Guyot) in a context of climate change scenario

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes. The main cultivars used for these wines are Corvina and Corvinone. In this Region hundreds of years ago a particular training system (Pergola, cordon/cane with horizontal shoot-positioning) was developed. In the last 20 years the Guyot have been introduced in the area; now Pergola and Guyot are equally widespread in the Valpolicella area. In two different environmental conditions (hill and floodplain) two vineyards, one for each type of training system, were studied along two years (2011-2012).

Optimization of in vitro establishment of grapevine varieties for fast micropropagation 

Micropropagation is an important alternative to conventional methods of plant propagation. The objective of this study was to optimize a protocol for in vitro micropropagation of selected grapevine hybrids (H19 and H20) that are included in our breeding program. For the sprouting initiation experiment, nodal cuttings with only one axillary bud from two hybrids were separated, disinfected, and cultivated in 50% Murashige Skoog nutrient medium (½ MS) and Woody Plant Medium (WPM), adding 4.4 µM benzyladenine (BA) in both mediums.

Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

In the context of climate change and for the sustainable exploitation of Mediterranean vineyards, it is necessary to use new strategies to adapt to the new climatic conditions.