Terroir 2010 banner
IVES 9 IVES Conference Series 9 Il sistema vigneto del Lago di Bolsena: caratterizzazione della produzione di Cannaiola di Marta

Il sistema vigneto del Lago di Bolsena: caratterizzazione della produzione di Cannaiola di Marta

Abstract

[English version below]

Il comprensorio del Lago di Bolsena (VT) è un territorio ad elevata vocazione vitivinicola in cui il paesaggio della vite storicamente persiste e caratterizza la fisionomia dei luoghi. Qui gli agroecosistemi viticoli possiedono una valenza ecologico-ambientale, storico-culturale ed economica di rilievo. La ricerca condotta ha previsto la caratterizzazione della tipologia delle produzioni e degli ambienti di coltivazione di diversi vitigni locali, in particolare il vitigno autoctono Cannaiola di Marta, con l’obiettivo di salvaguardarne il valore biologico, valutarne la qualità in funzione dei microambienti di coltivazione e il ruolo nella definizione della fisionomia del paesaggio. Mediante indagine cartografica è stata condotta un’analisi diacronica a scala territoriale per evidenziare il ruolo dei vigneti nell’uso del suolo e nella definizione dell’ecomosaico ambientale. In vigneti rappresentativi dell’eterogeneità degli ambienti di coltivazione, il vitigno autoctono Cannaiola di Marta è stato caratterizzato con indagine ampelografia rispetto alla varietà certificata Canaiolo nero. La qualità della produzione è stata rapportata alla tipologia di suolo e alla variabilità fisiografica. Uno studio dell’architettura dei vigneti ha completato l’analisi dei modelli viticoli. I risultati ottenuti hanno evidenziato l’unicità della produzione della Cannaiola di Marta e la particolarità degli ambienti di coltivazione per una qualità superiore. E’ emerso il carattere di vulnerabilità di questa produzione dovuta alla frammentarietà dei vigneti, a fronte di un elevato valore storico-culturale degli impianti. Il sistema vigneto della Cannaiola di Marta si inserisce armonicamente in un ecosistema prezioso per la salvaguardia delle risorse ambientali e paesaggistiche di un territorio fra i più suggestivi del Lazio.

The northern part of the Lazio region, i.e. the area around the Lake of Bolsena, is highly vacated to grapevine production. Since the past, rural landscape has been characterized by vineyards, that represent still today a distinctive trait of this territory. Here vineyards exhibit economical, but also ecological, historical, biological and social functions. Nonetheless, vineyard surface is decreasing dramatically, with evident loss in biodiversity and landscape diversity. The study was carried out in order to characterized through a systemic approach the production of the local variety Cannaiola di Marta and its territorial contest. In order to preserve this production and the related landscape, the germplasm unicity was evaluated, the grape quality was tested in the highly differing physical environments, and the physionomy of the vineyards, as well as that of the rural landscape, was measured through cartographic elaboration. The research has proved that the investigated area is suitable for high quality and unique productions. It is also possible to attribute to these vulnerable vineyards a cultural significance, based on the employment of historic germplasm, on traditional vineyard traits and cultural practices. The viticulture of this territory is included in a equilibrated ecosystem, in which vineyards might preserve the environmental resources of one of the most agreeable territory of the Lazio region.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

R. Biasi, E. Brunori, I. Ceccariglia, F. Botti

Dipartimento di Produzione Vegetale, Università degli Studi della Tuscia Via S. Camillo De Lellis, snc – 01100 Viterbo, Italia

Contact the author

Keywords

ecologia del paesaggio, multifunzionalità, paesaggio agrario tradizionale, vitigni autoctoni, zonazione
landscape ecology, local variety, multifunctionality, tradizional vineyards, zonation

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Terroir traceability in grapes, musts and wine: results of research on Gewürztraminer and Sauvignon Blanc grape varieties in northern Italy

In the study of terroir, a separate analysis of its many component factors can be of great help in accurately identifying a vineyard’s natural elements that impact wine quality and typicity. This research used a dedicated pluri-disciplinary approach to investigate the ecological characteristics, including geology and geographical features, of 14 vineyards that produce Gewürztraminer and Sauvignon Blanc cultivars in the alpine Alto Adige DOC wine region. Both the geopedological method using Vineyards Geological Identity (VGI) and the new Solar Radiaton Identity (SRI) topoclimatic classification method were used to provide analytical measurements and qualitative/quantitative characterisations. In addition, wide-ranging targeted and untargeted oenological and chemical analyses were carried out on grapes, musts and wines to correlate the soils’ geomineral and physical conditions with the biochemical properties of their fruits and wines. The research identified strong correlations between vineyard geo-identity and wine biofingerprint, confirming a mineral traceability of strontium rubidium ratio and some minerals distinctive to the local geology, such as K, Ca, Ag, Ba and Mn.  The study also discovered that particular geomineral and physical soil conditions of the studied vineyards are related to the different amount of amino acids, primary varietal aromas and polyphenols found in grapes, musts and wines. The research confirmed that winemaking technologies support oenological quality, although in some cases, human practices can overpower certain characteristic elements in wine, erasing the typical imprint left by the vineyards’ natural terroir, which becomes less traceable. Terroir abiotic ecological factors and vineyard identity can be classified in detail using the new VGI and SRI analysis methods to discover interrelationships between geo-pedological and topoclimatic conditions that impact wine quality. These methods are also helpful in identifying which ecological elements are exclusive to a particular vineyard or wine sub-region.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Mechanical fruit zone leaf removal and deficit irrigation practices interact to affect yield and fruit quality of Cabernet Sauvignon grown in a hot climate

Cabernet Sauvignon is the top red wine cultivar in CA, however, the hot climate in Fresno is not ideal for Cabernet Sauvignon, particularly for berry color development. Fruit-zone leaf removal and irrigation were studied previously to have the significant effect on grape yield performance and berry quality. But the timing of leaf removal and the timing of irrigation are still inconclusive. Also, mechanical fruit-zone leaf removal is relatively new in CA. Our study aims to identify the interactive effect of mechanical fruit-zone leaf removal and irrigation on Cabernet Sauvignon’s yield performance and fruit quality and find the ideal timing of leaf removal and irrigation to maximize the berry color while maintaining the sustainable yield level.

Vineyard yield estimation using image analysis: assessing bunch occlusions and its dependency on fruiting zone canopy features

Performing accurate vineyard yield estimation is of upmost importance as it provides important benefits to the whole vine and wine industry. Recently, image-analysis approaches have been explored to address this issue however this approach has as main challenge the bunch occlusion, mostly by vegetation but also by neighboring bunches. The present work aims at assessing the magnitude of bunch occlusion by neighboring bunches and to evaluate its dependency on a selection of vegetative and reproductive vine parameters assessed at fruiting zone. Forty vine segments (1 m) of two vineyard plots of the white cultivars ‘Alvarinho’ and ‘Arinto’ were assessed for vegetative and reproductive features at fruiting zone and imaged with a 2D camera.

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.