Terroir 2010 banner
IVES 9 IVES Conference Series 9 The influence of culture medium on the dynamics of fermentation of wine yeasts

The influence of culture medium on the dynamics of fermentation of wine yeasts

Abstract

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains, which in laboratory investigations which have great biotechnological properties This study was intended as the ratio of live cells and autolysates cells also the influence of culture medium on this report. Yeasts selected for this study were isolated from industrial strains of indigenous grape varieties, namely: Feteasca Royal (FR) Feteasca White (FA), black Feteasca (FN), Romanian Tamaioasa (TR), Babeasca Black (BN) and Cotnari Grasa (GC).

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Ketney Otto, Oprean Letitia, Radulescu Axenia, Tita Mihaela, Gaspar Eniko, Lengyel Ecaterina, Tita Ovidiu

Lucian Blaga University
Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Ioan Ratiu street no. 7-9
Sibiu, Romania

Contact the author

Keywords

Wine, yeast, Saccharomyces ellipsoideus, biotechnological, properties

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Mapping and tracking canopy size with VitiCanopy

Understanding vineyard variability to target management strategies, apply inputs efficiently and deliver consistent grape quality to the winery is essential. However, despite inherent vineyard variability, the majority are managed as if they are uniform. VitiCanopy is a simple, grower-friendly tool for precision/digital viticulture that allows users to collect and interpret objective spatial information about vineyard performance. After four years of field and market research, an upgraded VitiCanopy has been created to achieve a more streamlined, technology-assisted vine monitoring tool that provides users with a set of superior new features, which could significantly improve the way users monitor their grapevines. These new features include: • New user interface • User authentication • Batch analysis of multiple images • Ease the learning curve through enhanced help features • Reporting via the creation of colour maps that will allow users to assess the spatial differences in canopies within a vineyard. Use-case examples are presented to demonstrate the quantification and mapping of vineyard variability through objective canopy measurements, ground-truthing of remotely sensed measurements, monitoring of crop conditions, implementation of disease and water management decisions as well as creating a history of each site to forecast quality. This intelligent tool allows users to manage grapevines and make informed management choices to achieve the desired production targets and remain profitable.

Seasonal dynamics of water and sugar compartmentalization in grape clusters under deficit irrigation

Water stress triggers functional compartmentalization in grapevines, influencing how resources are allocated to different plant organs.

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity.

Methodological advances in relating deep root activity to whole vine physiology

Full understanding of grapevine responses to variable soil resources requires
assessing the grapevine root system. Grapevine root systems are expansive and examining deep roots (i.e., >40 cm)
is particularly important in conditions where grapevines increase reliance on deep soil resources, such as drought
or plant competition. Traditional methods of assessing roots rely on morphological traits associated specific
functions (e.g., root color, diameter, length), while recent methodological advances allow for estimating root
function more directly (e.g., omics). Yet, the potential of applying refined methods remains underexplored for roots
at deep depths.

The fundamental role of pH in the anthocyanins chemical behavior and in their extractability during winemaking

The chemical behavior of anthocyanins is considerably affected even by slight pH variations with impor-tant implications for the winemaking as well as for the wine conservation