Terroir 2010 banner
IVES 9 IVES Conference Series 9 Long-term vineyard sustainability index

Long-term vineyard sustainability index

Abstract

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment. Relative changes can be used for comparisons within regions. Our research took place over three years on soils of vineyards of different ages and under different management, in both the Awatere and the Wairau Valleys in Marlborough, New Zealand. Soil properties investigated were: pH (optimal value 5.5-7.0); organic carbon (OC, 3-5%); carbon/nitrogen ratio (C/N,10-20); bulk density (BD, 0.9-1.3 t/m3); macro-porosity (MP, 8-30%); microbial biomass (MB-C, g C/m2 in 15 cm of soil); basal respiration (BR-C, 1.5-4.5 g CO2-C/m2/day), respiration quotient (qCO2, 0.5-1.5 mg CO2-C/g MB-C) and kg carbon/m2 for 15 cm of soil (4.5-9.0 kg-C). Objective descriptions of vineyard soil quality would assist growers to apply and monitor sustainable vineyard management practices. This data set indicates changes in sustainability that can be expected after a change of land-use to grape growing.
Under average vineyard management, soil carbon declined rapidly during the first few years but reached a plateau after two or more years. Soil depth was shown to be influential, with soils below 15 cm much less affected by land use changes, but scoring lower for all soil carbon parameters (except for qCO2). Soils at this depth also scored lower for soil physical properties; they generally had a very high BD, low MP and low pH. These trends for the 15-30 cm layer are typical soil properties – they don’t imply that soil depth is a factor in sustainability indices per se.
The high variability and generally reduced levels of under-vine soil carbon compared with headland soil carbon, suggest the need to increase vineyard soil carbon content and thereby potentially sequestrate carbon.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Marc Greven (1), Victoria Raw (1), Colin Gray (2), Markus Deurer (3), Bruce West (1), Claire Grose (1)

(1) The New Zealand Institute for Plant & Food Research Limited, Marlborough, PO Box 845, Blenheim 7240,
New Zealand
(2) Marlborough District Council, 15 Seymour Street, Blenheim 7201, New Zealand
(3) The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442,
New Zealand

Contact the author

Keywords

vineyard, grape, soil biophysical properties, organic carbon, microbial biomass, basal respiration, macro-porosity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Les terroirs : variae causarum figurae

The jurist feels like an intruder when talking about terroirs. He looks at the press and tries to understand. We can read there about the cooking festival of May 30, 1996 which “..highlights products whose quality depends on a region”, that Camembert du pays d’Auge is the only one to be protected, I was thinking of camembert from Normandy, that 80% of Greek feta is made in the Netherlands, I thought it was in Denmark, and that the European Community protects geographical indications of IGP origin, probably a new category replacing the indications protected areas (1). I also learned that distributors are asking for more local products because “they come to confuse the cards in the part engaged with the big brands”. Carrefour has its “Terroirs and drawers”, Prisunic its “Vent d’Ouest”, Intermarché “Les bouquets du terroir”, Monoprix “Les terroirs de France” (2), Promodés and its brand “Reflets de France” for the “Continent” hypermarkets (3). At the same time it is asserted that “The term is a mere common noun. Unprotectable and therefore unprotected” (4).

Reconocimiento geoedafológico para la zonificación vitivinícola de la D.O. Montilla-Moriles

En la región vitivinícola con D.O. Montilla-Moriles (Córdoba) la variabilidad geologico-petrográfica de los terrenos es grande (ROLDÁN GARCÍA y DIVAR RODRÍGUEZ, 1988 a; roldán garcía et al.

Analyses of a long-term soil temperature record for the prediction of climate change induced soil carbon changes and greenhouse gas emissions in vineyards

The evaluation of the current and future impact of climate change on viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in almost all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the ipcc (the physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.

Geological influences on terroir development

Geological influences on terroir development

Quality of Merlot wines produced from terraced vineyards and vineyards on alluvial plains in Vipava valley, Slovenia (pdo)

AIM: Different factors affect the style and quality of wine and one of the most important are environmental factors of vineyard location.