Terroir 2010 banner
IVES 9 IVES Conference Series 9 Long-term vineyard sustainability index

Long-term vineyard sustainability index

Abstract

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment. Relative changes can be used for comparisons within regions. Our research took place over three years on soils of vineyards of different ages and under different management, in both the Awatere and the Wairau Valleys in Marlborough, New Zealand. Soil properties investigated were: pH (optimal value 5.5-7.0); organic carbon (OC, 3-5%); carbon/nitrogen ratio (C/N,10-20); bulk density (BD, 0.9-1.3 t/m3); macro-porosity (MP, 8-30%); microbial biomass (MB-C, g C/m2 in 15 cm of soil); basal respiration (BR-C, 1.5-4.5 g CO2-C/m2/day), respiration quotient (qCO2, 0.5-1.5 mg CO2-C/g MB-C) and kg carbon/m2 for 15 cm of soil (4.5-9.0 kg-C). Objective descriptions of vineyard soil quality would assist growers to apply and monitor sustainable vineyard management practices. This data set indicates changes in sustainability that can be expected after a change of land-use to grape growing.
Under average vineyard management, soil carbon declined rapidly during the first few years but reached a plateau after two or more years. Soil depth was shown to be influential, with soils below 15 cm much less affected by land use changes, but scoring lower for all soil carbon parameters (except for qCO2). Soils at this depth also scored lower for soil physical properties; they generally had a very high BD, low MP and low pH. These trends for the 15-30 cm layer are typical soil properties – they don’t imply that soil depth is a factor in sustainability indices per se.
The high variability and generally reduced levels of under-vine soil carbon compared with headland soil carbon, suggest the need to increase vineyard soil carbon content and thereby potentially sequestrate carbon.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Marc Greven (1), Victoria Raw (1), Colin Gray (2), Markus Deurer (3), Bruce West (1), Claire Grose (1)

(1) The New Zealand Institute for Plant & Food Research Limited, Marlborough, PO Box 845, Blenheim 7240,
New Zealand
(2) Marlborough District Council, 15 Seymour Street, Blenheim 7201, New Zealand
(3) The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442,
New Zealand

Contact the author

Keywords

vineyard, grape, soil biophysical properties, organic carbon, microbial biomass, basal respiration, macro-porosity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Terpenoid profiles and biosynthetic gene expression pattern in Asti DOCG white muscat grapes at ripening as affected by different canopy management protocols

Aim: The main goal of this study was to find an efficient canopy management to limit the high temperature-related aroma losses of White Muscat grapes, and consequently to preserve the quality standards of Asti DOCG wines.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Melatonin priming retards fungal decay in postharvest table grapes 

Postharvest losses of fruits may reach in some cases 40% in developed countries. This food waste has a significant carbon footprint and makes a major contribution toward greenhouse gas emissions so sustainable postharvest strategies are being investigated.
Melatonin, a well-known mammalian neurohormone, has been investigated as a priming agent to slow down fungal decay progression in postharvest climacteric and some non-climacteric fruits. However, the molecular and metabolic mechanisms responsible for such enhancement of disease tolerance are largely unknown.

Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Precision nutrient management in viticulture can be addressed on the basis of a spatial characterization of within‐vineyard vine

Applications of Infrared Spectroscopy from laboratory to industry

The grape and wine industries have long sought rapid, reliable and cost-effective methods to screen and monitor all the stages of the winemaking process, which include grape ripening in the vineyard, harvest and grape reception at the weighbridge, the fermentation stage and the bottling of the final product.