Terroir 2010 banner
IVES 9 IVES Conference Series 9 Long-term vineyard sustainability index

Long-term vineyard sustainability index

Abstract

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment. Relative changes can be used for comparisons within regions. Our research took place over three years on soils of vineyards of different ages and under different management, in both the Awatere and the Wairau Valleys in Marlborough, New Zealand. Soil properties investigated were: pH (optimal value 5.5-7.0); organic carbon (OC, 3-5%); carbon/nitrogen ratio (C/N,10-20); bulk density (BD, 0.9-1.3 t/m3); macro-porosity (MP, 8-30%); microbial biomass (MB-C, g C/m2 in 15 cm of soil); basal respiration (BR-C, 1.5-4.5 g CO2-C/m2/day), respiration quotient (qCO2, 0.5-1.5 mg CO2-C/g MB-C) and kg carbon/m2 for 15 cm of soil (4.5-9.0 kg-C). Objective descriptions of vineyard soil quality would assist growers to apply and monitor sustainable vineyard management practices. This data set indicates changes in sustainability that can be expected after a change of land-use to grape growing.
Under average vineyard management, soil carbon declined rapidly during the first few years but reached a plateau after two or more years. Soil depth was shown to be influential, with soils below 15 cm much less affected by land use changes, but scoring lower for all soil carbon parameters (except for qCO2). Soils at this depth also scored lower for soil physical properties; they generally had a very high BD, low MP and low pH. These trends for the 15-30 cm layer are typical soil properties – they don’t imply that soil depth is a factor in sustainability indices per se.
The high variability and generally reduced levels of under-vine soil carbon compared with headland soil carbon, suggest the need to increase vineyard soil carbon content and thereby potentially sequestrate carbon.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Marc Greven (1), Victoria Raw (1), Colin Gray (2), Markus Deurer (3), Bruce West (1), Claire Grose (1)

(1) The New Zealand Institute for Plant & Food Research Limited, Marlborough, PO Box 845, Blenheim 7240,
New Zealand
(2) Marlborough District Council, 15 Seymour Street, Blenheim 7201, New Zealand
(3) The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442,
New Zealand

Contact the author

Keywords

vineyard, grape, soil biophysical properties, organic carbon, microbial biomass, basal respiration, macro-porosity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Genetic diversity of Oenococcus oeni strains isolated from Yinchuan wine region in the East of Helan Mountain, China

Aim: This study aimed to isolate Oenococcus oeni in red wines from Yinchuan wine region in the East of Helan Mountain, China, and analysis their genetic diversity. Methods and Results: Oenococcus oeni strains were isolated from Cabernet Sauvignon and Cabernet Gernischt wines of four

Can grapevine tolerance to bunch rot be directly induced by groundcover management?

Botrytis bunch rot occurrence is the most important limitation for the wine industry in humid environments. The effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). Previous studies of our group showed strong differences in bunch rot incidence between floor management treatments: cover crop (CC) vs weed-free strips under the trellis with herbicide (H). We observed that in some circumstances this reduction in bunch rot incidence occurred without major vine growth differences among treatments. The aim of the present study was to test the general hypothesis that other factors unrelated to grapevine vegetative expression could be more relevant to grapevine susceptibility to bunch rot.

Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Rachis browning is a common abiotic stress that occurs during postharvest storage, leading to a decrease in commercial value of table grapes and resulting in significant economic losses. Its early detection could enable the implementation of preventive strategies. In this report, we show the feasibility of a non-destructive early detection of browning based on Hyper Spectral Imaging (HSI). Furthermore, rachis samples were subjected to transcriptomic analysis to understand putative pathways causing differences in browning within varieties.

Thermal conditions during the grape ripening period in viticulture geoclimate. Cool night index and thermal amplitude

Le régime thermique en période de maturation du raisin est l’une des variables déterminantes de la coloration du raisin et de la richesse en arômes, anthocyanes et polyphénols des vins.

Merano Wine Festival 2020

IVES was a partner of the Merano Wine Festival (innovation section), a digital event held from 6 to 10 November 2020. During this festival participants attended scientific conferences on cutting-edge topics for the wine industry. Some of the topics covered have been selected from our journals