Terroir 2010 banner
IVES 9 IVES Conference Series 9 Long-term vineyard sustainability index

Long-term vineyard sustainability index

Abstract

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment. Relative changes can be used for comparisons within regions. Our research took place over three years on soils of vineyards of different ages and under different management, in both the Awatere and the Wairau Valleys in Marlborough, New Zealand. Soil properties investigated were: pH (optimal value 5.5-7.0); organic carbon (OC, 3-5%); carbon/nitrogen ratio (C/N,10-20); bulk density (BD, 0.9-1.3 t/m3); macro-porosity (MP, 8-30%); microbial biomass (MB-C, g C/m2 in 15 cm of soil); basal respiration (BR-C, 1.5-4.5 g CO2-C/m2/day), respiration quotient (qCO2, 0.5-1.5 mg CO2-C/g MB-C) and kg carbon/m2 for 15 cm of soil (4.5-9.0 kg-C). Objective descriptions of vineyard soil quality would assist growers to apply and monitor sustainable vineyard management practices. This data set indicates changes in sustainability that can be expected after a change of land-use to grape growing.
Under average vineyard management, soil carbon declined rapidly during the first few years but reached a plateau after two or more years. Soil depth was shown to be influential, with soils below 15 cm much less affected by land use changes, but scoring lower for all soil carbon parameters (except for qCO2). Soils at this depth also scored lower for soil physical properties; they generally had a very high BD, low MP and low pH. These trends for the 15-30 cm layer are typical soil properties – they don’t imply that soil depth is a factor in sustainability indices per se.
The high variability and generally reduced levels of under-vine soil carbon compared with headland soil carbon, suggest the need to increase vineyard soil carbon content and thereby potentially sequestrate carbon.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Marc Greven (1), Victoria Raw (1), Colin Gray (2), Markus Deurer (3), Bruce West (1), Claire Grose (1)

(1) The New Zealand Institute for Plant & Food Research Limited, Marlborough, PO Box 845, Blenheim 7240,
New Zealand
(2) Marlborough District Council, 15 Seymour Street, Blenheim 7201, New Zealand
(3) The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442,
New Zealand

Contact the author

Keywords

vineyard, grape, soil biophysical properties, organic carbon, microbial biomass, basal respiration, macro-porosity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Postharvest ozone treatment in grapevine white cultivars: Effects on grape volatile composition

During postharvest management, the metabolism of fruits remains active and continuous physico-chemical changes occur. Ozone treatment has an elicitor effect on secondary metabolites and the treatment conditions can influence the grape response to the stress (Bellincontro et al., 2017; Botondi et al., 2015). Regarding volatile organic compounds (VOCs), previous studies showed that ozone treatment during postharvest dehydration induces the biosynthesis of terpenes in Moscato bianco grapes (Río Segade et al., 2017). It is well known that grape VOCs greatly influence the organoleptic properties of wines, particularly terpenes in aromatic varieties.

Vineyard management for environment valorisation

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Harnessing biodiversity to improve grapevine rootstock adaptation to drought

Drought is one of the most challenging threats for viticulture because of its impact on reducing yield and on the composition of grapes.

Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

AIM: In the last years, many wineries are increasing experimentation to produce more distinguishable beverages. In this sense, the reduction of the fermentation temperature could be a useful tool because it preserves volatile compounds and prevents wines from browning, particularly in the case of white wines.