Terroir 2010 banner
IVES 9 IVES Conference Series 9 Long-term vineyard sustainability index

Long-term vineyard sustainability index

Abstract

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment. Relative changes can be used for comparisons within regions. Our research took place over three years on soils of vineyards of different ages and under different management, in both the Awatere and the Wairau Valleys in Marlborough, New Zealand. Soil properties investigated were: pH (optimal value 5.5-7.0); organic carbon (OC, 3-5%); carbon/nitrogen ratio (C/N,10-20); bulk density (BD, 0.9-1.3 t/m3); macro-porosity (MP, 8-30%); microbial biomass (MB-C, g C/m2 in 15 cm of soil); basal respiration (BR-C, 1.5-4.5 g CO2-C/m2/day), respiration quotient (qCO2, 0.5-1.5 mg CO2-C/g MB-C) and kg carbon/m2 for 15 cm of soil (4.5-9.0 kg-C). Objective descriptions of vineyard soil quality would assist growers to apply and monitor sustainable vineyard management practices. This data set indicates changes in sustainability that can be expected after a change of land-use to grape growing.
Under average vineyard management, soil carbon declined rapidly during the first few years but reached a plateau after two or more years. Soil depth was shown to be influential, with soils below 15 cm much less affected by land use changes, but scoring lower for all soil carbon parameters (except for qCO2). Soils at this depth also scored lower for soil physical properties; they generally had a very high BD, low MP and low pH. These trends for the 15-30 cm layer are typical soil properties – they don’t imply that soil depth is a factor in sustainability indices per se.
The high variability and generally reduced levels of under-vine soil carbon compared with headland soil carbon, suggest the need to increase vineyard soil carbon content and thereby potentially sequestrate carbon.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Marc Greven (1), Victoria Raw (1), Colin Gray (2), Markus Deurer (3), Bruce West (1), Claire Grose (1)

(1) The New Zealand Institute for Plant & Food Research Limited, Marlborough, PO Box 845, Blenheim 7240,
New Zealand
(2) Marlborough District Council, 15 Seymour Street, Blenheim 7201, New Zealand
(3) The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442,
New Zealand

Contact the author

Keywords

vineyard, grape, soil biophysical properties, organic carbon, microbial biomass, basal respiration, macro-porosity

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Mapping natural terroir units using a multivariate approach and legacy data

This work aimed at setting up a multivariate and geostatistical methodology to map natural terroir units of the viticultural areas at the province scale (1:125,000).

GC-O and olfactoscan approaches to reveal premature aging markers in Chardonnay wine

Molecular markers of wine oxydation, such as sotolon or Strecker’s aldehydes that induce respectively nut or curry and boiled vegetables or wilted rose odors, can be percieved as a default by consumers. These volatile compounds are especially formed during the premature aging of wine, but it is likely that several contributing compounds are still unknown as is their combined contribution. This study was carried out to identify the markers of oxydation in Chardonnay wine by Gas Chromatography Olfactometry (GC-O) and to study the impact of these markers on the complex wine aromatic buffer using the Olfactoscan approach.A Chardonnay wine (2018-vintage), taken after malolactic fermentation without sulphites addition, was submitted to an artificial oxidation to simulate more or less prononced premature oxidation. Volatile compounds were extracted by Solid-Phase Extraction (SPE) and analysed by GC-O with a panel of 13 trained subjects. The same extract was also submitted to a second analysis based on the Olfactoscan technique, which allowed to evaluate the impact of each volatile compounds on the complex aromatic buffer of a non-oxidized wine delivered as background odor. Preliminary results revealed three types of behavior. On the one hand, several odor zones appeared only with the background odour, suggesting a synergy effect induced by the compounds in the aromatic buffer. Conversely, odor-active compounds could not be perceived within the background odor suggesting a masking effect. Finally several compounds were found to contribute as key odorants for wine oxydation once mixed with the aromatic buffer. These compounds are still to be identified using complementary techniques.

New training methods to manage climatic and ecological transitions in perennial fruit crops

Context and purpose. Climate change and the demand for reducing inputs, including chemical compounds, present significant challenges for perennial fruit crops like grapes and apples.

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection