Terroir 2008 banner
IVES 9 IVES Conference Series 9 Characterization of the Origin Denomination “Ribeira Sacra”

Characterization of the Origin Denomination “Ribeira Sacra”

Abstract

“Ribeira Sacra” is an origin denomination located between the provinces of Lugo and Ourense, in Galicia (northwest of Spain). With a surface of 1.250 Ha, the Ribeira Sacra is divided into 5 different subzones where the main culture variety is the Mencía cultivar. The evaluation of the ground fertility index and its repercussion in the wine quality of the 5 subzones was determined in 2003. The ground analyses indicated that all the parcels are sandy textured with high C/N ratio. Most of the samples showed an average value of acidity, with unbalance in the phosphorus and potassium content. Important differences were detected in the alcoholic levels, total acidity and pH of wines. The malic acid content varied according to the location. Important differences in the anthocyanin concentration and the total polyphenol index were found.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

ORRIOLS I., VÁZQUEZ I., SOTO E., REGO X., REGO F., LOSADA A.

Estación de Viticultura e Enología de Galicia. Consellería de Medio Rural
32427 Ponte San Clodio. Leiro (Ourense)

Contact the author

Keywords

Ribeira Sacra, zone, acidity, alcoholic degree, phenolic compounds

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.

LIFE Climawin: impacts, risks and opportunities in the transition to sustainable viticulture

The LIFE Climawin project drives the sustainable transformation of the wine sector in response to climate change through the implementation of an innovative management model applied at the demonstrative winery, Bosque de Matasnos.

Différenciation de parcelles de Chenin du Val de Loire, a l’aide de l’etude des flores fongiques des raisins, en utilisant l’outil DGGE

Depuis le millésime 2002, une étude est menée sur la diversité de la flore fongique de parcelles du cépage chenin, situées essentiellement sur les appellations de Vouvray et Montlouis ; deux appellations séparées par le fleuve nommé la Loire. Les parcelles se situent dans des conditions pédoclimatiques différentes, qui se retrouvent au travers des suivis de maturité et l’état sanitaire.

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1, was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants.

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress.