Terroir 2008 banner
IVES 9 IVES Conference Series 9 Characterization of the Origin Denomination “Ribeira Sacra”

Characterization of the Origin Denomination “Ribeira Sacra”

Abstract

“Ribeira Sacra” is an origin denomination located between the provinces of Lugo and Ourense, in Galicia (northwest of Spain). With a surface of 1.250 Ha, the Ribeira Sacra is divided into 5 different subzones where the main culture variety is the Mencía cultivar. The evaluation of the ground fertility index and its repercussion in the wine quality of the 5 subzones was determined in 2003. The ground analyses indicated that all the parcels are sandy textured with high C/N ratio. Most of the samples showed an average value of acidity, with unbalance in the phosphorus and potassium content. Important differences were detected in the alcoholic levels, total acidity and pH of wines. The malic acid content varied according to the location. Important differences in the anthocyanin concentration and the total polyphenol index were found.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

ORRIOLS I., VÁZQUEZ I., SOTO E., REGO X., REGO F., LOSADA A.

Estación de Viticultura e Enología de Galicia. Consellería de Medio Rural
32427 Ponte San Clodio. Leiro (Ourense)

Contact the author

Keywords

Ribeira Sacra, zone, acidity, alcoholic degree, phenolic compounds

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The 1-hydroxyoctan-3-one, a molecule potentially involved in the fresh mushroom off-flavor in wines

An organoleptic defect, called fresh mushrooms off-flavor (FMOff), appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, 3-octanol and octen-3-ol (C8 compounds) were involved in the mushroom off-flavor in wines

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast Assimilable Nitrogen and Sugar content.

Hydroxytyrosol (HT) is well known for its potent antioxidant activity and anticarcinogenic, antimicrobial, cardioprotective and neuroprotective properties. One possible explanation to its origin in wines is the synthesis from tyrosol, which in turn is produced from the Ehrlich pathway by yeasts. This work aims to explore the factors that could increase the final content as the initial concentration of yeast assimilable nitrogen (YAN) and sugar. Two different concentrations of YAN were proved between 210mg/L and 300 mg/L. Additionally, two different concentrations of sugar were used: 100g/L and 240 g/L. Alcoholic fermentations in synthetic must were performed with the strain QA23.

Modeling island and coastal vineyards potential in the context of climate change

Climate change impacts regional and local climates, which in turn affects the world’s wine regions. In the short term, these modifications rises issues about maintaining quality and style of wine, and in a longer term about the suitability of grape varieties and the sustainability of traditional wine regions. Thus, adaptation to climate change represents a major challenge for viticulture. In this context, island and coastal vineyards could become coveted areas due to their specific climatic conditions. In regions subject to warming, the proximity of the sea can moderate extremes temperatures, which could be an advantage for wine. However, coastal and island areas are particular prized spaces and subject to multiple pressures that make the establishment or extension of viticulture complex.
In this perspective, it seems relevant to assess the potentialities of coastal and island areas for viticulture. This contribution will present a spatial optimization model that tends to characterize most suitable agroclimatic patterns in historical or emerging vineyards according to different scenarios. Thanks to an in-depth bibliography a global inventory of coastal and insular vineyards on a worldwide scale has been realized. Relevant criteria have been identified to describe the specificities of these vineyards. They are used as input data in the optimization process, which will optimize some objectives and spatial aspects. According to a predefined scenario, the objectives are set in three main categories associated with climatic characteristics, vineyards characteristics and management strategies. At the end of this optimization process, a series of maps presents the different spatial configurations that maximize the scenario objectives.