Terroir 2008 banner
IVES 9 IVES Conference Series 9 Characterization of the Origin Denomination “Ribeira Sacra”

Characterization of the Origin Denomination “Ribeira Sacra”

Abstract

“Ribeira Sacra” is an origin denomination located between the provinces of Lugo and Ourense, in Galicia (northwest of Spain). With a surface of 1.250 Ha, the Ribeira Sacra is divided into 5 different subzones where the main culture variety is the Mencía cultivar. The evaluation of the ground fertility index and its repercussion in the wine quality of the 5 subzones was determined in 2003. The ground analyses indicated that all the parcels are sandy textured with high C/N ratio. Most of the samples showed an average value of acidity, with unbalance in the phosphorus and potassium content. Important differences were detected in the alcoholic levels, total acidity and pH of wines. The malic acid content varied according to the location. Important differences in the anthocyanin concentration and the total polyphenol index were found.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

ORRIOLS I., VÁZQUEZ I., SOTO E., REGO X., REGO F., LOSADA A.

Estación de Viticultura e Enología de Galicia. Consellería de Medio Rural
32427 Ponte San Clodio. Leiro (Ourense)

Contact the author

Keywords

Ribeira Sacra, zone, acidity, alcoholic degree, phenolic compounds

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

Implications of herbicide, cultivation or cover crop under-vine soil management on the belowground microbiote

Soil management through cover crops in the lines of the vineyards is a common practice in viticulture, since it improves the characteristics of the soil. It has been shown that the cover crops can influence the cycle of nutrients, promote infiltration, decrease erosion, and enhance the soil microbiota biodiversity improving the grapevines. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in hot climates. The use of cover crops under the vines might be a plausible alternative to the use of herbicides or cultivation, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status and belowground microbial communities.

Étude de la cinétique de transfert du 2,4,6-trichloroanisole (TCA) entre des bouchons en liège naturel et le vin – premiers résultats

The last step in winemaking is packaging the wines for market placement, while preserving the quality attained during vinification. Since the 1980s, 2,4,6-trichloroanisole (TCA) has been recognised as an incidental and random contaminant of cork, with its migration into wine thought to contribute to ‘cork taint’. This molecule is not a cork component and little is known about how it is formed on trees. Its formation from the chlorine used to wash the cork stoppers, long suspected, has been excluded by the abandonment of chlorine washing.

Aroma diversity of Amarone commercial wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.