Terroir 2008 banner
IVES 9 IVES Conference Series 9 Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

Abstract

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c. 690 mm, whereas the Breede River Valley has a semi-arid climate with an annual rainfall of less than 300 mm.
Although irrigation is increasingly practiced, rain-fed vineyards are still commonly encountered in the Coastal Region. Wine styles differ in these vineyards. These differences are due, amongst other factors, to variations in climate and topography. They are also influenced by variations in soil type, notable with regard to water-holding capacity. In contrast to the Coastal Region, all grapevines in the Breede River Valley are irrigated. Under these conditions, in which the effects of soil type, and of water holding capacity, are moderated by scientific irrigation, wine style may be expected to be mainly affected by climate.
The aim of this investigation was to quantify the effect of soil type on wine style in rain-fed Sauvignon blanc and Cabernet Sauvignon vineyards in the Coastal Region, and in irrigated vineyards of the same cultivars in the Breede River Valley. Two experimental plots, representing different soil types, were identified within each vineyard. Experimental wines were prepared separately for each soil type.
Results showed that the styles of Sauvignon blanc, and of Cabernet Sauvignon wines from the Coastal Region, and from the Breede River Valley, were affected by both climate and soil type. The effect of soil type was moderated, but not entirely eliminated, by scientifically scheduled irrigation.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

M.P. OLIVIER and W.J. CONRADIE

ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa

Contact the author

Keywords

Breede River Valley, Cabernet Sauvignon, Coastal Region, Sauvignon blanc, South Africa

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Mannoproteins extraction from wine lees using natural deep eutectic solvents

Wine lees can be a good source of yeast mannoproteins for both food and wine applications [1,2]. However, mannoprotein extraction from wine lees has not yet been scaled up to an industrial scale, mainly because of the limited cost-effectiveness ratio of the methods employed at the laboratory scale [2].

Soil incorporation of new superabsorbent hydrogels to improve vine tolerance to summer stress: physiological validation and vineyard applications

Hydrogels are soil-conditioning materials capable of absorbing substantial amounts of water relative to their weight.

Geological history and landscape of the Coastal wine-growing region, South Africa

The geology of the Western Cape testifies to the former existence of a late Precambrian supercontinent, its fragmentation, the closure of an ocean between the South African and South American continental precursors (Kalahari and Rio de la Plata cratons), the accumulation of marine sediments and limestones, and their compression during a collision between these cratons

Climate and the evolving mix of grape varieties in Australia’s wine regions

The purpose of this study is to examine the changing mix of winegrape varieties in Australia so as to address the question: In the light of key climate indicators and predictions of further climate change, how appropriate are the grape varieties currently planted in Australia’s wine regions? To achieve this, regions are classified into zones according to each region’s climate variables, particularly average growing season temperature (GST), leaving aside within-region variations in climates. Five different climatic classifications are reported. Using projections of GSTs for the mid- and late 21st century, the extent to which each region is projected to move from its current zone classification to a warmer one is reported. Also shown is the changing proportion of each of 21 key varieties grown in a GST zone considered to be optimal for premium winegrape production. Together these indicators strengthen earlier suggestions that the mix of varieties may be currently less than ideal in many Australian wine regions, and would become even less so in coming decades if that mix was not altered in the anticipation of climate change. That is, grape varieties in many (especially the warmest) regions will have to keep changing, or wineries will have to seek fruit from higher latitudes or elevations if they wish to retain their current mix of varieties and wine styles.

Aspects concernant les relations entre quelques composantes de la biomasse viticole, en fonction de l’offre des ressources écologiques

Ecological resources represent vegetation factors, or even production factors, in quantitative expression. These, used by plants, transformed and organized according to their genetic program, become the material components of biomass. Subsequently, the ecological resources can be used as synthetic indicators of the ecological supply, necessary for the analysis of favorability for the understanding of ecosystems.