Terroir 2008 banner
IVES 9 IVES Conference Series 9 Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

Abstract

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c. 690 mm, whereas the Breede River Valley has a semi-arid climate with an annual rainfall of less than 300 mm.
Although irrigation is increasingly practiced, rain-fed vineyards are still commonly encountered in the Coastal Region. Wine styles differ in these vineyards. These differences are due, amongst other factors, to variations in climate and topography. They are also influenced by variations in soil type, notable with regard to water-holding capacity. In contrast to the Coastal Region, all grapevines in the Breede River Valley are irrigated. Under these conditions, in which the effects of soil type, and of water holding capacity, are moderated by scientific irrigation, wine style may be expected to be mainly affected by climate.
The aim of this investigation was to quantify the effect of soil type on wine style in rain-fed Sauvignon blanc and Cabernet Sauvignon vineyards in the Coastal Region, and in irrigated vineyards of the same cultivars in the Breede River Valley. Two experimental plots, representing different soil types, were identified within each vineyard. Experimental wines were prepared separately for each soil type.
Results showed that the styles of Sauvignon blanc, and of Cabernet Sauvignon wines from the Coastal Region, and from the Breede River Valley, were affected by both climate and soil type. The effect of soil type was moderated, but not entirely eliminated, by scientifically scheduled irrigation.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

M.P. OLIVIER and W.J. CONRADIE

ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa

Contact the author

Keywords

Breede River Valley, Cabernet Sauvignon, Coastal Region, Sauvignon blanc, South Africa

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology.

Variability of Tempranillo grape quality within the Ribera del Duero do (Spain) and relationships with climatic characteristics

The aim of this research was to evaluate the variability of ripening characteristics of the Tempranillo variety within the Ribera del Duero Designation of Origin (Spain) and it relationships with soil characteristics

The effect of water stress deficit on ‘Xynisteri’ grapes through systems biology approaches

Cyprus is one of the very few phyloxera-free areas worldwide where the vast majority of vines are own-rooted and non-irrigated. ‘Xynisteri’ is a predominant indigenous cultivar, particularly amenable to extreme conditions such as drought and hot climate, thus rendering it appropriate for marginal soils and adverse climatic conditions. In the current work, a comparative study between irrigated (irrigation initiated at BBCH 71) and non-irrigated vines was conducted.

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

Sensory and chemical effects of postharvest grape cooling on wine quality

Wine cellars are affected by seasonally fluctuating workloads and face challenges especially in the harvest period connected to the required timely processing of the harvested grapes.