Terroir 2016 banner
IVES 9 IVES Conference Series 9 Using a grape compositional model to predict harvest time and influence wine style

Using a grape compositional model to predict harvest time and influence wine style

Abstract

Linking wine composition to fruit composition is difficult due to the numerous biochemical pathways and substrate transformations that occur during fermentation. Grape composition regulates the production and final concentrations of most wine aroma compounds, as exemplified by methoxypyrazine and rotundone concentrations in wine being confidently predicted from the corresponding grape concentration. However, the final concentrations of many compounds in wines (aromatic and non-aromatic) are substantially dependent on the winemaking process.
The aim of this study was to better understand grape flavour evolution in relation to wine composition and subsequent wine style using sequential harvests (n=3). To achieve this goal, Shiraz was chosen as a model variety across two different climatic regions (warm-hot and cool-temperate) in New South Wales, Australia. The objective was not to compare the two regions but to assess the consistency of grape flavour evolution over the ripening period.

Irrespective of the region, a clear separation of samples was noted according to the harvest stage. Shiraz wines from the first harvest (H1) were associated with red fruit descriptors and higher acidity. Wines from the third harvest (H3) were correlated with dark fruit characters and a higher perception of alcohol. Higher concentrations of some higher alcohol acetates, dimethyl sulfide and lower concentrations of Z-3-hexenol, ethyl isobutyrate and ethyl leucate were measured in H3 wines.
Irrespective of the environment, this study demonstrated that in Shiraz, a common evolution of grape flavours exists, influencing the final wine sensory properties. Furthermore, during the late ripening stage, no direct nexus was observed between sugar concentration and grape and wine flavour evolution.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Alain DELOIRE (1), Katja ŠUKLJE (1), Guillaume ANTALICK (1), John BLACKMAN (1,2), Leigh SCHMIDTKE (1,2)

(1) National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
(2) School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia

Contact the author

Keywords

fruit and wine composition, wine sensory profile, sequential harvest, regionality, climate, volatiles, multivariate data analyses

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

Determination of selected phenolics, carotenoids and norisoprenoids in Riesling grapes after treatment against sunburn damage

Riesling represents the most widely cultivated grape variety in Germany and is therefore of particular economic interest. During recent years an increase in the petrol-note as well as in undesirable bitter and adstringent notes has been reported. These changes are most likely linked to increasing temperature and sunlight exposure of grapes due to climate changes.
The “petrol note” is caused by the formation of the C13-norisoprenoid 1,1,6-trimethyl-1,2-dihydronaphthalin (TDN), which originates from acid-labile precursors formed by the carotenoid degradation in the grape.

Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

In mid to late ripening, sugar and potassium (K+) accumulation into the berry slows and is eventually completed1. K+ is the most abundant cation in the berry, undertaking important physiological roles.

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains.

New understanding on sulfites reactivity in wine

Sulfur dioxide is widely used during winemaking as an antioxidant and antimicrobial agent. Bisulfite (HSO3−), the predominant form of SO2 at wine pH, reacts with several wine components forming sulfonated adducts.