Terroir 2006 banner
IVES 9 IVES Conference Series 9 Identification of the agronomical and landscapes potentialities in “Côtes du Rhône” area (France)

Identification of the agronomical and landscapes potentialities in “Côtes du Rhône” area (France)

Abstract

“Côtes du Rhône”, like many other controlled appellation wine, represents high stakes in the economical, social cultural and historical domains. The scenery formed by vineyards reveals these cultural values. It offers by a pleasant and appealing environment for the inhabitants and the tourists. It is also a powerful marketing tool for the winemakers. However, vineyards are attacked (urban pressure, infrastructures, expansion of enterprise zones) and it often affects the public image of the vineyards and the production potential. In order to protect the wine patrimony and to improve the communication between the concerned forces, it has started a study of the agronomic and landscape potentials of the vineyards. The aim is to map, for each village, the viticultural zones that should be protected in priority as they represent the highest stakes for the future of the “Côtes du Rhône” controlled appellation.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Charlotte ASSEMAT (1), Begoña RODRIGUEZ-LOVELLE (2), Laurence FABBRI (3) and Francis FABRE (1)

(1) Syndicat Général des Vignerons Réunis des Côtes du Rhône, Maison des Vins, 6 Rue des Trois Faucons, 84000 Avignon, France
(2) Service technique, Institut Rhodanien, 2260 route du Grès, 84100 Orange, France

Contact the author

Keywords

landscape, agronomical potentiality, « terroir »protection, « Côtes du Rhône », sustainable development

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Effect of plant fining agents in the must flotation process. Functional characterization

Flotation is one of the most used processes for clarifying white grape must after the pressing process. To date, gelatine is the more used fining agent, its action being improved when combined with bentonite and silica sol.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Sterols are a class of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality (Daum et al., 1998).

Projected changes in vine phenology of two varieties with different thermal requirements cultivated in La Mancha DO (Spain) under climate change scenarios

The aim of this work was to analyze the phenology variability of Tempranillo and Chardonnay cultivars, related to the climatic characteristics in La Mancha Designation of Origin, and their potential changes under climate change scenarios. Phenological dates referred to budbreak, flowering, veraison and harvest were analyzed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The thermal requirements to reach each of these phenological stages were calculated and expressed as the GDD accumulated from DOY=60. Changes in phenology were projected by 2050 and 2070 taking into account those values and the projected temperatures and precipitation, simulated under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5– using an ensemble of models. The average phenological dates during the period under study were, April 16th ± 6.6 days and April 5th ± 6.0 days for budbreak, May 31st ± 6.0 days and May 27th ± 5.3 days for flowering, July 26th ± 5.6 days and July 25th ± 5.8 days for veraison, and Ago 23rd ± 10.8 days and Ago 17th ± 9.0 days for harvest, respectively, for Tempranillo and Chardonnay. The projected changes in temperature imply an average change in the maximum growing season (April-August) temperatures of 1.2 and 1.9°C by 2050, and 1.6 and 2.6°C by 2070, under the RCP4.5 and RCP8.5 scenarios, respectively. A reduction in precipitation is predicted, which vary between 15% for 2050 under RCP4.5 scenario and up to 30% by 2070 under RCP8.5. The advance of the phenological dates for 2050, could be of 6, 7, 7, and 8 days for Tempranillo and 4, 6, 6 and 9 days for Chardonnay, respectively for budbreak, flowering, veraison and harvest under the RCP4.5 scenario. Under the RCP8.5 emission scenario, the advance could be up to 30% higher.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown grafted in most of the world largely because of Phylloxera. Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important means of adaptation to environmental conditions if we want to conserve the typical features of the currently used scion genotypes. To aid this adaptation, we can exploit the large diversity of rootstocks used worldwide. To fully explore this existing rootstock diversity, this work benefits from the unique GreffAdapt vineyard, in which four scion genotypes were studied onto 55 commercial rootstocks in three blocks. The aim of this study was to characterise rootstock regulation of scion mineral status and how it relates to scion development.