Terroir 2008 banner
IVES 9 IVES Conference Series 9 Radiative and thermal effects on fruit ripening induced by differences in soil colour

Radiative and thermal effects on fruit ripening induced by differences in soil colour

Abstract

One of the intrinsic parts of a vineyard “terroir” is soil type and one of the characteristics of the soil is it’s colour. This can differ widely from bright white, as for some calcareous soils, to red, as in “terra rossa” soils, or black, as in slate soils. The aim of this study was to assess how soil colour can influence vineyard microclimate and fruit properties including aroma precursors. After flowering, (BBCH 79) a loess-type soil (control) was covered with a thin layer of three different materials: a) black coarse slate, b) red clay brick, and c) white pumice. The vines (Vitis vinifera L. cvs. Riesling and Pinot noir) were trained to a vertical shoot positioning (VSP) system. Surface colour had significant effects on the quantity and quality of reflected radiation into the fruiting zone. The pumice covered soil showed the highest amount of reflected – and the highest ratio of red-to far red light, important in phytochrome mediated enzyme activity in the fruit.
Large thermal effects on soil surface temperature and on berry skin temperature were found. By varying the distance of clusters to the ground, the temperature of berry skins declined rapidly within the first 0.3 m when fruit was exposed to the red, white or natural coloured soil. In contrast, over coarse ground slate the absolute berry surface temperature was higher and remained constant over the same distances. Berry ripening was affected by surface colour and preliminary results indicate that altered vineyard microclimate has effects on berry composition.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

M. STOLL (1), M. STUEBINGER (2), M. LAFONTAINE (1) and H. R. SCHULTZ (1,2)

(1) Fachgebiet Weinbau, Institut für Weinbau und Rebenzüchtung, Forschungsanstalt, D-65366 Geisenheim
(2) Fachhochschule Wiesbaden, Fachbereich Geisenheim, D-65366 Geisenheim

Contact the author

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.

Anticipating consumer preference for low-alcohol wine: a machine learning analysis based on consumption habits and socio-demographics

The global wine consumption landscape is undergoing a transformation, marked by a growing trend towards reduced consumption and a preference for healthier lifestyles. In line with this shift, european union regulation (regulation eu 2021/2117) has recently redefined dealcoholized or partially dealcoholized wine within the wine category.

Pedological factor influence on the viticultural zoning of the Aljarafe Alto (Seville, Spain)

Aljarafe Alto est une petite zone naturelle dans le département de Séville (Espagne), où le cépage autochtone cultivé est le Palomino Garrido Fino.

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.

Mapping climate and bioclimatic indices at high-resolution in vineyard regions

Many of the world’s vineyard regions are located in regions of complex terrain, with the result there is significant local climate variation.