Terroir 2008 banner
IVES 9 IVES Conference Series 9 Radiative and thermal effects on fruit ripening induced by differences in soil colour

Radiative and thermal effects on fruit ripening induced by differences in soil colour

Abstract

One of the intrinsic parts of a vineyard “terroir” is soil type and one of the characteristics of the soil is it’s colour. This can differ widely from bright white, as for some calcareous soils, to red, as in “terra rossa” soils, or black, as in slate soils. The aim of this study was to assess how soil colour can influence vineyard microclimate and fruit properties including aroma precursors. After flowering, (BBCH 79) a loess-type soil (control) was covered with a thin layer of three different materials: a) black coarse slate, b) red clay brick, and c) white pumice. The vines (Vitis vinifera L. cvs. Riesling and Pinot noir) were trained to a vertical shoot positioning (VSP) system. Surface colour had significant effects on the quantity and quality of reflected radiation into the fruiting zone. The pumice covered soil showed the highest amount of reflected – and the highest ratio of red-to far red light, important in phytochrome mediated enzyme activity in the fruit.
Large thermal effects on soil surface temperature and on berry skin temperature were found. By varying the distance of clusters to the ground, the temperature of berry skins declined rapidly within the first 0.3 m when fruit was exposed to the red, white or natural coloured soil. In contrast, over coarse ground slate the absolute berry surface temperature was higher and remained constant over the same distances. Berry ripening was affected by surface colour and preliminary results indicate that altered vineyard microclimate has effects on berry composition.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

M. STOLL (1), M. STUEBINGER (2), M. LAFONTAINE (1) and H. R. SCHULTZ (1,2)

(1) Fachgebiet Weinbau, Institut für Weinbau und Rebenzüchtung, Forschungsanstalt, D-65366 Geisenheim
(2) Fachhochschule Wiesbaden, Fachbereich Geisenheim, D-65366 Geisenheim

Contact the author

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

From plant water status to wine flavonoid composition: a precision viticulture approach in a Sonoma county vineyard

Plant water status of grapevine plays a critical role in affecting berry and final wine chemical composition. The environmental variabilities existing in vineyard system have significant impacts on plant water status, but it is challenging to individualize environmental factors from the temporal and spatial variabilities in vineyard. Therefore, there is need to monitor the ecophysical variation through utilizing precision viticulture tools in order to minimize the separation in berry composition. This study aims at delineating vineyard into different management zones based on plant water status explained by soil texture, and utilize differential harvest to equilibrate the final berry and wine composition.

Non-invasive grapevine inflorescence detection using YOLOv11 under field conditions

Accurate and early yield estimation in vineyards is essential for the effective management of resources and informed decision-making in viticulture.

Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Hydrogen sulfide (H2S) has a significant impact on wine aroma attributes and wine quality when present at concentrations above its aroma threshold of 1.1 to 1.6 μg/L.

Study of the sensory dimension of the wine typicality related to a terroir and crossing with their viticultural and oenological characteristics

The typicality of a product can be characterized by properties of similarity in relation to a type, but also by the properties of distinction.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.