Terroir 2008 banner
IVES 9 IVES Conference Series 9 Radiative and thermal effects on fruit ripening induced by differences in soil colour

Radiative and thermal effects on fruit ripening induced by differences in soil colour

Abstract

One of the intrinsic parts of a vineyard “terroir” is soil type and one of the characteristics of the soil is it’s colour. This can differ widely from bright white, as for some calcareous soils, to red, as in “terra rossa” soils, or black, as in slate soils. The aim of this study was to assess how soil colour can influence vineyard microclimate and fruit properties including aroma precursors. After flowering, (BBCH 79) a loess-type soil (control) was covered with a thin layer of three different materials: a) black coarse slate, b) red clay brick, and c) white pumice. The vines (Vitis vinifera L. cvs. Riesling and Pinot noir) were trained to a vertical shoot positioning (VSP) system. Surface colour had significant effects on the quantity and quality of reflected radiation into the fruiting zone. The pumice covered soil showed the highest amount of reflected – and the highest ratio of red-to far red light, important in phytochrome mediated enzyme activity in the fruit.
Large thermal effects on soil surface temperature and on berry skin temperature were found. By varying the distance of clusters to the ground, the temperature of berry skins declined rapidly within the first 0.3 m when fruit was exposed to the red, white or natural coloured soil. In contrast, over coarse ground slate the absolute berry surface temperature was higher and remained constant over the same distances. Berry ripening was affected by surface colour and preliminary results indicate that altered vineyard microclimate has effects on berry composition.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

M. STOLL (1), M. STUEBINGER (2), M. LAFONTAINE (1) and H. R. SCHULTZ (1,2)

(1) Fachgebiet Weinbau, Institut für Weinbau und Rebenzüchtung, Forschungsanstalt, D-65366 Geisenheim
(2) Fachhochschule Wiesbaden, Fachbereich Geisenheim, D-65366 Geisenheim

Contact the author

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Use of fumaric acid to control pH and inhibit malolactic fermentation in wines

In this audio recording of the IVES science meeting 2022, Antonio Morata (Universidad Politécnica de Madrid, Madrid, Spain) speaks about the use of fumaric acid to control pH and inhibit malolactic fermentation in wines.

Novel biorefinery step for grape marc valorisation: polysaccharides extraction by subcritical water

The exploitation of food by-products has garnered significant attention over the past few decades, particularly within the framework of the European Green Deal.

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

Electrochemical diversity of italian white wines

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.