Terroir 2008 banner
IVES 9 IVES Conference Series 9 Radiative and thermal effects on fruit ripening induced by differences in soil colour

Radiative and thermal effects on fruit ripening induced by differences in soil colour

Abstract

One of the intrinsic parts of a vineyard “terroir” is soil type and one of the characteristics of the soil is it’s colour. This can differ widely from bright white, as for some calcareous soils, to red, as in “terra rossa” soils, or black, as in slate soils. The aim of this study was to assess how soil colour can influence vineyard microclimate and fruit properties including aroma precursors. After flowering, (BBCH 79) a loess-type soil (control) was covered with a thin layer of three different materials: a) black coarse slate, b) red clay brick, and c) white pumice. The vines (Vitis vinifera L. cvs. Riesling and Pinot noir) were trained to a vertical shoot positioning (VSP) system. Surface colour had significant effects on the quantity and quality of reflected radiation into the fruiting zone. The pumice covered soil showed the highest amount of reflected – and the highest ratio of red-to far red light, important in phytochrome mediated enzyme activity in the fruit.
Large thermal effects on soil surface temperature and on berry skin temperature were found. By varying the distance of clusters to the ground, the temperature of berry skins declined rapidly within the first 0.3 m when fruit was exposed to the red, white or natural coloured soil. In contrast, over coarse ground slate the absolute berry surface temperature was higher and remained constant over the same distances. Berry ripening was affected by surface colour and preliminary results indicate that altered vineyard microclimate has effects on berry composition.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

M. STOLL (1), M. STUEBINGER (2), M. LAFONTAINE (1) and H. R. SCHULTZ (1,2)

(1) Fachgebiet Weinbau, Institut für Weinbau und Rebenzüchtung, Forschungsanstalt, D-65366 Geisenheim
(2) Fachhochschule Wiesbaden, Fachbereich Geisenheim, D-65366 Geisenheim

Contact the author

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Using a grape compositional model to predict harvest time and influence wine style

Linking wine composition to fruit composition is difficult due to the numerous biochemical pathways and substrate transformations that occur during fermentation

Antioxidant activity of grape seed and skin extract during ripening

Reactive oxygen species (ROS) play an important physiological role in the body’s defense and being involved in numerous signaling pathways 1, 2. When the balance between oxidant and antioxidant species is altered in favor of ROS, oxidative stress is generated. In this condition the cells are damaged as the ROS oxidize important cellular components, such as proteins, lipids, nucleic acids and

Towards stopping pesticides: survey identification of on-farm solutions

The winegrowing sector consumes a lot of pesticides. Changes in vineyard are necessary in order to reduce or even stop using pesticides, and thus limit their harmful impacts on health and on environment. To answer these issues, the VITAE project (2021-2026) aims at designing pesticide free grapevine systems in France. For that, we take an interest in the vineyards using solutions to strongly reduce chemicals but also biopesticides. We assume that such vineyards exist and that they are implementing solutions that could inspire the design of free- pesticide system.

Water status response of Vitis vinifera L. cv Cabernet-Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study

Understanding the water-use responses of grapevines to increasing atmospheric carbon dioxide concentrations is mandatory when assessing the impact of climate change on viticulture as it is a critical part of the adaptation process.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.