Terroir 2008 banner
IVES 9 IVES Conference Series 9 Terroir Hesse – Soil determines wine style

Terroir Hesse – Soil determines wine style

Abstract

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition. We also analyse the rate of roots mycorhization. 
For few years we used both Y. HERODY (BRDA) analysis and Xavier SALDUCCI (CELESTA) ones. Since 2004 we have adopted only Xavier SALDUCCI analysis menu : two compartments of organic matters, microbial mass and mineralization activities of carbon and nitrogen. 
Here are shown the results of 100 organic and biological analysis: 
– Carbon level is low to very low (less than 10 g /kg ) : 56% of the plots. 
– Nitrogen level is low to very low (less than 1 g/kg) : 64% of the plots. 
– Microbial mass is low in 71% of the plots (less than 200 mg of microbial C /kg). No plot has a level higher than 400mg of microbial C /kg. 
– Carbon Mineralization Activity is high to very high, more than 400mg mg C-CO2 /kg/28 days, in 49% of the plots 
– Nitrogen Mineralization Activity is low to very low (less than 1 mg de N-NO3N-NH4+ /kg/28 days) : 53% of the plots. 
Since 2006, we control organic and biological evolution specially in plots where green manures and composted organic matters have been used. In 4 plots where the analysis showed (in 2001) a very high lake of organic matter and microbial mass, we not that : 
– The organic matter level has been partially improved . Bt the rate is still low in two parcels. 
– The microbial mass has been improved even it is still low in two parcels. 
Even, if the levels are still low, the vine is more healthy : no more nutrients deficiency symptom, the vine growth is more homogenous, the yield and the crop quality have increased, with a real expression of the “Terroir”. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Prof. Dr. Otmar LÖHNERTZ, Dr. Peter BÖHM, Stefan MUSKAT

Forschungsanstalt Geisenheim,Fachgebiet Bodenkunde und Pflanzenernährung, Rüdesheimer Str. 18-20, D-65366 Geisenheim

Contact the author

Keywords

Terroir, Soil, Wine Style

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

Guyot or pergola for dehydration of Rondinella grape

Pergola veronese is the most important vine training system in Valpolicella area but Guyot in the last decades is diffusing. Rondinella is one of the three most important varieties

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.