Terroir 2008 banner
IVES 9 IVES Conference Series 9 Terroir Hesse – Soil determines wine style

Terroir Hesse – Soil determines wine style

Abstract

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition. We also analyse the rate of roots mycorhization. 
For few years we used both Y. HERODY (BRDA) analysis and Xavier SALDUCCI (CELESTA) ones. Since 2004 we have adopted only Xavier SALDUCCI analysis menu : two compartments of organic matters, microbial mass and mineralization activities of carbon and nitrogen. 
Here are shown the results of 100 organic and biological analysis: 
– Carbon level is low to very low (less than 10 g /kg ) : 56% of the plots. 
– Nitrogen level is low to very low (less than 1 g/kg) : 64% of the plots. 
– Microbial mass is low in 71% of the plots (less than 200 mg of microbial C /kg). No plot has a level higher than 400mg of microbial C /kg. 
– Carbon Mineralization Activity is high to very high, more than 400mg mg C-CO2 /kg/28 days, in 49% of the plots 
– Nitrogen Mineralization Activity is low to very low (less than 1 mg de N-NO3N-NH4+ /kg/28 days) : 53% of the plots. 
Since 2006, we control organic and biological evolution specially in plots where green manures and composted organic matters have been used. In 4 plots where the analysis showed (in 2001) a very high lake of organic matter and microbial mass, we not that : 
– The organic matter level has been partially improved . Bt the rate is still low in two parcels. 
– The microbial mass has been improved even it is still low in two parcels. 
Even, if the levels are still low, the vine is more healthy : no more nutrients deficiency symptom, the vine growth is more homogenous, the yield and the crop quality have increased, with a real expression of the “Terroir”. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Prof. Dr. Otmar LÖHNERTZ, Dr. Peter BÖHM, Stefan MUSKAT

Forschungsanstalt Geisenheim,Fachgebiet Bodenkunde und Pflanzenernährung, Rüdesheimer Str. 18-20, D-65366 Geisenheim

Contact the author

Keywords

Terroir, Soil, Wine Style

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels.

Importance of matrix effects (wine composition) on protein stability tests of white and rosé wines

The presence of unstable proteins in wines can affect their stability and clarity. Before bottling, winemakers need to be sure that the wine is stable. A large number of stability tests have been proposed, usually based on heating a sample with a specific time-temperature couple. In practice, none is effective to accurately assess the risk of instability. Moreover, the interpretation of the results of these tests changes according to the region.

Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Sensory analysis of grape berries is a common tool to evaluate the degree of grape maturation and to make sound picking decisions.

Evolution of the amino acids content through grape ripening: Effect of foliar application of methyl jasmonate with or without urea

The parameters that determine the grape quality, and therefore the optimal harvest time, suffer variations during berry ripening, related to climate change, with the widely known problem of the gap between technological and phenolic maturities. However, there are few studies about its incidence on grape nitrogen composition. For this reason, the use of an elicitor, methyl jasmonate (MeJ), alone or with urea, is proposed as a tool to reduce climatic decoupling, allowing to establish the harvest time in order to achieve the optimum grape quality. The aim was to study the effect of MeJ and MeJ+Urea foliar applications on the evolution of Tempranillo amino acids content throughout the grape maturation. Three treatments were foliarly applied, at veraison and 7 days later: control (water), MeJ (10 mM) and MeJ+Urea (10 mM+6 kg N/ha). Grape samples were taken at five stages of maturation: day before the first and second applications, 15 days after the second application (pre-harvest), harvest day, and 15 days after harvest (post-harvest). The amino acids analysis of the samples was carried out by HPLC. Results showed that the evolution of amino acids was similar regardless of the treatment; however, foliar applications influenced the nitrogen compounds content, i.e., there was no qualitative effect but quantitative one. Most of the amino acids reached their maximum concentration in pre-harvest, being higher in grapes from the treatments than in the control. In general, no differences in grape amino acids content were observed between MeJ and MeJ+Urea treatments. Foliar applications with MeJ and MeJ+Urea enhanced the grape amino acids content, without affecting their profile, helping to optimize their quality and allowing to establish a more complete grape ripening standard. Therefore, MeJ and MeJ+Urea foliar applications can be a simple agronomic practice, which has shown promising results in order to enhance the grape quality.

Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Labor shortage is one of the most crucial issues in current viticulture. Mechanized approaches are helpful in reducing production costs and increasing vineyard efficiency but their effect on grapes and wines needs evaluation. This work assess the results of combined mechanical pruning and shoot thinning with deficit irrigation strategies to reduce management costs but not quality of production.