Terroir 2008 banner
IVES 9 IVES Conference Series 9 Terroir Hesse – Soil determines wine style

Terroir Hesse – Soil determines wine style

Abstract

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition. We also analyse the rate of roots mycorhization. 
For few years we used both Y. HERODY (BRDA) analysis and Xavier SALDUCCI (CELESTA) ones. Since 2004 we have adopted only Xavier SALDUCCI analysis menu : two compartments of organic matters, microbial mass and mineralization activities of carbon and nitrogen. 
Here are shown the results of 100 organic and biological analysis: 
– Carbon level is low to very low (less than 10 g /kg ) : 56% of the plots. 
– Nitrogen level is low to very low (less than 1 g/kg) : 64% of the plots. 
– Microbial mass is low in 71% of the plots (less than 200 mg of microbial C /kg). No plot has a level higher than 400mg of microbial C /kg. 
– Carbon Mineralization Activity is high to very high, more than 400mg mg C-CO2 /kg/28 days, in 49% of the plots 
– Nitrogen Mineralization Activity is low to very low (less than 1 mg de N-NO3N-NH4+ /kg/28 days) : 53% of the plots. 
Since 2006, we control organic and biological evolution specially in plots where green manures and composted organic matters have been used. In 4 plots where the analysis showed (in 2001) a very high lake of organic matter and microbial mass, we not that : 
– The organic matter level has been partially improved . Bt the rate is still low in two parcels. 
– The microbial mass has been improved even it is still low in two parcels. 
Even, if the levels are still low, the vine is more healthy : no more nutrients deficiency symptom, the vine growth is more homogenous, the yield and the crop quality have increased, with a real expression of the “Terroir”. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Prof. Dr. Otmar LÖHNERTZ, Dr. Peter BÖHM, Stefan MUSKAT

Forschungsanstalt Geisenheim,Fachgebiet Bodenkunde und Pflanzenernährung, Rüdesheimer Str. 18-20, D-65366 Geisenheim

Contact the author

Keywords

Terroir, Soil, Wine Style

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Saccharomyces cerevisiae, as the workhorse of alcoholic fermentation, is a major actor of winemaking. In this context, this yeast species uses alcoholic fermentation to convert sugars from the grape must into ethanol and CO2 with an outstanding efficiency: it reaches on average 92% of the maximum theoretical yield of conversion. Moreover, S. cerevisiae is also known for its great genetic diversity and plasticity that is directly related to its living environment, natural or technological and therefore to domestication. This leads to a great phenotypic diversity of metabolites production.

Interaction among grapevine cultivars (Sangiovese, Cabernet-Sauvignon and Merlot) and site of cultivation in Bolgheri (Tuscany)

Different “landscape unit” have been identified in Bolgheri area (a viticultural appellation in the Tirrenian coast of Tuscany) by the aid of pedological, landscape and agronomic observations in the 1992-1993 period. In all cultivar (Sangiovese, Cabernet Sauvignon and Merlot) x landscape unit combinations, experimental plots were chosen in homogeneous vineyards, single cordon trained (about 3300-4500 vines/hectare). Grape maturation was studied by weekly samples of berries from veraison to vintage in the 1992-1995 period. At harvest yield and must composition traits were measured and, from the most représentative plots, sixty kilograms of grapes were harvested each year and vinified according to a standardised scheme. Wines were evaluated by standard chemical and sensory analyses.

Grapegrowing soils

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

Convergence and divergence in chemical and sensory profiles of disease-resistant and Vitis vinifera white wines from South Tyrol: addressing strategies for market adoption

This study investigates the chemical and sensory profiles of white wines produced from disease-resistant hybrid grape cultivars (DRHGCs) compared to traditional Vitis vinifera L. cultivars in South Tyrol, Italy.