Terroir 2008 banner
IVES 9 IVES Conference Series 9 Terroir Hesse – Soil determines wine style

Terroir Hesse – Soil determines wine style

Abstract

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition. We also analyse the rate of roots mycorhization. 
For few years we used both Y. HERODY (BRDA) analysis and Xavier SALDUCCI (CELESTA) ones. Since 2004 we have adopted only Xavier SALDUCCI analysis menu : two compartments of organic matters, microbial mass and mineralization activities of carbon and nitrogen. 
Here are shown the results of 100 organic and biological analysis: 
– Carbon level is low to very low (less than 10 g /kg ) : 56% of the plots. 
– Nitrogen level is low to very low (less than 1 g/kg) : 64% of the plots. 
– Microbial mass is low in 71% of the plots (less than 200 mg of microbial C /kg). No plot has a level higher than 400mg of microbial C /kg. 
– Carbon Mineralization Activity is high to very high, more than 400mg mg C-CO2 /kg/28 days, in 49% of the plots 
– Nitrogen Mineralization Activity is low to very low (less than 1 mg de N-NO3N-NH4+ /kg/28 days) : 53% of the plots. 
Since 2006, we control organic and biological evolution specially in plots where green manures and composted organic matters have been used. In 4 plots where the analysis showed (in 2001) a very high lake of organic matter and microbial mass, we not that : 
– The organic matter level has been partially improved . Bt the rate is still low in two parcels. 
– The microbial mass has been improved even it is still low in two parcels. 
Even, if the levels are still low, the vine is more healthy : no more nutrients deficiency symptom, the vine growth is more homogenous, the yield and the crop quality have increased, with a real expression of the “Terroir”. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Prof. Dr. Otmar LÖHNERTZ, Dr. Peter BÖHM, Stefan MUSKAT

Forschungsanstalt Geisenheim,Fachgebiet Bodenkunde und Pflanzenernährung, Rüdesheimer Str. 18-20, D-65366 Geisenheim

Contact the author

Keywords

Terroir, Soil, Wine Style

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Terroir and Typicity: proposed definitions for two essential concepts in the understanding of Geographical Indications and sustainable development

The content of this communication arises from the deliberations of a working group mandated within the framework of the INRA-INAO 2000-2003 research convention, which brought together INAO representatives and researchers who had worked on AOCs or PGIs, in disciplines from the sphere of the humanities (consumer science, marketing, rural development) and biotechnical sciences (agronomy, animal production science, technology, biochemistry).

Dual mode of action of grape cane extracts against Botrytis cinerea

Crude extracts of Vitis vinifera canes represent a natural source of stilbene compounds with well characterized antifungals properties. In our trials, exogenous application of a stilbene extract (SE) obtained from grape canes on grapevine leaves reduces the necrotic lesions caused by Botrytis cinerea

Evaluation of the composition of pomace from grapes grown in the slopes of the Popocatépetl volcano (Puebla, Mexico). Feasibility of its application for obtaining functional foods

Grape pomace is the main byproduct generated during wine production and is primarily composed of skins and seeds, which are obtained after the pressing stage [1]. This byproduct retains a significant amount of nutrients, such as fiber, phenolic compounds, unsaturated fatty acids, vitamins, and minerals.

Optimized protocol for high-quality RNA extraction from grape tissues using sorbitol pre-wash

Obtaining high-quality RNA from grape tissues, including berry pulp, berry skins, stems, rachis, or roots, is challenging due to their composition, which includes polysaccharides, phenolic compounds, sugars, and organic acids that can negatively affect RNA extraction. For instance, polyphenols and other secondary metabolites can bind to RNA, making it difficult to extract a pure sample. Additionally, RNA can co-precipitate with polysaccharides, leading to lower extraction yield. Also, sugars and organic acids can interfere with the pH and ionic properties of the extraction buffer. To address these challenges, we optimized a protocol for RNA isolation from grape tissues.